我的教育观:丘成桐谈求学与做人
上QQ阅读APP看书,第一时间看更新

我的数学之路

我在中国香港的郊区——元朗和沙田——长大。那里没有电,也没有自来水。小时候,我就在河中洗澡。我的家中有8个兄弟姐妹,食物少得可怜。5岁时,我参加某著名小学的入学试,结果没有考上,原因是用了错误的记号,如把57反写成75,把69反写成96等。

我只能上一所小小的乡村学校。那里有很多来自农村的粗野小孩。受这些小孩的威吓,加上老师处理不善,不到一年,我便身患重病。在家中养病的半年里,我思索着如何跟同学和老师相处。升上小六时,我已经是一群小孩的首领,带着他们在街头乱闯。

家父是一位教授。他教了我不少中国文学。可是,他并不知道我曾旷课好一段日子(或者这是因为我在家中循规蹈矩,他教授的诗词我也能倒背如流吧)。逃学的原因是老师不怎么教学,我在学校闷得发慌,不久连上街也觉得无聊了。当时,香港有统一的升中试。我考得并不好,但幸好分数落在分界线上。

港英政府允许这些分数落在分界线上的学生申请私立中学,并提供学费。我进入了培正中学。培正是一所很好的中学。我中学生涯的第一年乏善可陈。我的成绩不大好,老师常常对我很生气。大概我刚从乡村出来,“野性”未改吧。我热衷于养蚕,养小鱼,到山上去捉各种小动物。沙田的风景美丽清新,在大自然的怀抱里,倒是自得其趣,我到如今还不能忘怀。

当时武侠小说盛行,我很喜欢读这些小说,没有钱去买,就向邻居借。父亲不赞成我读这些小说,认为肤浅,但我还是偷偷去看,也看了各种不同的章回小说,如《七侠五义》《说岳全传》《东周列国志》等。

父亲从我小学五年级开始教我诗词、古文和古典小说,如《三国演义》《水浒传》《红楼梦》《西厢记》等。父亲坚持要我在看这些古文时,背诵其中的诗词。当时虽以为苦,但顺口吟诵,慢慢也习惯了,但总觉得没有看武侠小说刺激。

但真正对我有影响的不是武侠小说。中国古典文学深深影响了我做学问的气质和修养。近代的作品,如鲁迅的作品也在我的阅读之列。记忆深刻的有:“其实地上本没有路;走的人多了,也便成了路。”

我们家中常有父亲的学生来访,这些学生往往兴高采烈地谈学问。他们常常谈及古希腊哲学,虽然我对古希腊哲学不大了解,但对它留下了深刻的印象。古希腊学者对真理和美无条件的追求,成了我一生治学的座右铭。他们对康德的哲学和自然辩证法的讨论常常使我感到莫名其妙。但久而久之,这竟然激起了我对自然科学的兴趣。西方的名著,如《浮士德》《战争与和平》等,我虽有接触,但远不如中国文学印象深刻。

我开始研读史学名著《史记》和《左传》,对《史记》尤其着迷。这不仅是因为其文字优美、音调铿锵,而且因为它叙事求真、史观独特。直到现在,我还不时披阅。史学大师驻足高涯,俯视整个历史,与大科学家思索风云、探索宇宙之奥秘的壮举遥相呼应。

当时读这些文章,我大部分不能够领会,尤其困难的是读冯友兰写的《新原道》和《新原人》,但反复地去读,总会有点收获。晋陶渊明说:


好读书,不求甚解;每有会意,便欣然忘食。


其实在做科学时,也往往有同样的经验,读书只要有兴趣,不一定要全懂,慢慢地自然领会其中心思想;但同时须做到:不戚戚于贫贱,不汲汲于富贵。

这是古人的经验,陶渊明的古文和诗有他的独特气质,深得自然之趣;我们从事科学研究的学者也需要得到自然界的气息,需要具备同样的精神。

在后来的日子里,我都以此为原则,以研读学问为乐事,不以为苦。在父亲的循循善诱下,我开始建立起对人生的看法。到如今,我读《史记》至以下一段时,仍然心志清新。司马迁的《史记·孔子世家》中说:


天下君王至于贤人众矣,当时则荣,没则已焉。孔子布衣,传十余世,学者宗之。


假如我们追求的是永恒的真理,即使一时受挫,也不觉灰心。韩愈说:


苟余行之不迷,虽颠沛其何伤。


我读《左传》,始知有不朽的事情。《左传·襄公二十四年》中说:


豹闻之,太上有立德,其次有立功,其次有立言,虽久不废,此之谓不朽。


以前我以为立德跟立言没有关系,但历经数十年的观察,才知道立德的重要性。立德、立功、立言之道,必以谦让质朴为主。

我有一个学生在南京大学接受电视台采访时曾自炫:“会当凌绝顶,一览众山小。”真乃轻妄浮夸之言。其实远山微小,越近越觉其宏大。往往众人合作才能跨过困难的地方,在没有尝试做创造性的学问时,才会有这种肤浅的言论。

在培正的第二年,我多言多动,老师要记我小过。她是我的班主任,责任心强,诚然是为我好。当她知道家父是位教授,却拿着微薄的薪酬后,大为震动。此后,在她的悉心栽培下,我在课堂上规矩多了。就在这一年,我们开始学习平面几何。

同学们对抽象思维都不习惯。由于在家中时常听父亲谈论哲学,对利用公理进行推导的做法,我一点也不觉得陌生。学习几何后,我对父亲的讲话又多明白了几分。利用简单的公理,却能推导出美妙的定理,这实在令人神往。

对几何的狂热,提高了我对数学(包括代数)的鉴赏能力。当你喜欢某科目时,所有与之有关的东西都会变得浅易。我对历史也甚有兴趣。它培养我对事物要整体观看,不断思考事件是如何发生的,到底是什么缘故,以及将来会如何。

就在这时,父亲完成了他的《西洋哲学史》[1]。他跟学生谈话,总是说应整体地去看历史。这种观念深深地影响了我。这种想法,在往后的日子中,指引我去寻找研究项目。父亲的书对我有很深的影响。书的引言中引用了《文心雕龙·诸子篇》中的一句话:


身与时舛,志共道申,标心于万古之上,而送怀于千载之下。


这是何等的胸襟,与古人神交,而能送怀于后世,确实是一位学者应有的态度。

哲学史的目的有三:一曰求因,哲学思潮其源甚多,必先上溯以求之;二曰明变,往昔哲学思想交缠纠绪,故重理其脉络,是为要务;三曰评论,所有思潮及其流派,皆一一评论,作警策精辟之言。这三点和自然科学的研究有密切的关系,再加上创新,便可以概括为研究的方法了。

我14岁时,父亲去世了。这或许是我一生中最大的打击。在一段颇长的日子里,对父亲离开了我和家人的事实,我都难以置信。家中经济顿入困境,我们面临辍学。幸得母亲苦心操持,以及先父旧交弟子的援手,我们才幸免沦落。

家中剧变,令我更加成熟坚强。困境中人情冷暖,父亲生前的教导,竟变得真实起来。以前诵读的诗词古文,有了进一步的体会。我花了整整半年,研习古典文学和中国历史,借此抚平绷紧的心弦。典丽的诗词教人欣赏自然之美,排除了世俗功利的思想。

我阅读了大量数学书,并考虑书中的难题。当这些难题都解决以后,我开始创造自己认为有挑战性的题目。此后,由个人去创造问题变成我研究事业中最关键的环节。学校的课本已经不能满足我的需求了。我跑到图书馆、书店去看书。我花了许多时间打书钉[2],阅读那些买不起的书。我读了华罗庚先生写的很多参考书,无论是在分析还是在数论上的讨论,它们都漂亮极了。我也看了很多帮助课堂解题的书,例如陈明哲写的一些小册子。一般来说,我会比课程早一个学期做完所有的习题,所以听数学课是一种享受。

从15岁起,我开始给低年级学生当家教,以帮补家计。我找到一些巧妙的方法,使成绩落后的孩子摇身变成优等生,为此我有点飘飘然。我积累了教导年轻人的经验,同时也体会到教学相长的道理。

我们的数学老师十分好。他教授的内容比课程要求的更加艰深,但我觉得丝毫不费气力,其实我的同学们虽然叫苦,但总的来说,数学都不错,这叫作“取法乎上,仅得其中”。近代数学的教学方法,恐怕适得其反,“取法乎中,仅得其下”。

当时我们的物理老师不太行,学生们对此不无失望。中学时养成不了物理上的基本直观,至今于心还有戚戚焉。中文老师却是无懈可击。他是我的父执辈。他教导我们思想要不落俗套。

中文老师说,思维要自出机杼,读好书之余,烂书也无妨一读,以资比较。因此我什么书都啃,他的这种观点,就是放诸我日后的科学生涯中,也有其可取之处。中文老师问的问题很有意思,他出过一个作文题叫“猪的哲学观”。于是大伙儿兴高采烈,自由发挥。在班里,我并非名列前茅,数学科的等级也不见得最高。但我比同班诸子想得更深,书也读得更多。

中学读书,除数学外,真正对我前途有影响的是中文和历史。现在来谈谈中学中文和历史对我的影响。下面一篇文章使我觉得做学问是我一辈子的志愿。曹丕在《典论·论文》中说:


盖文章,经国之大业,不朽之盛事。年寿有时而尽,荣乐止乎其身,二者必至之常期,未若文章之无穷。是以古之作者,寄身于翰墨,见意于篇籍,不假良史之辞,不托飞驰之势,而声名自传于后。


有了做学问的志愿后,我尽量培养自己做学问的兴趣,这要从做大量的习题和思考开始。《论语》中说:


学而时习之,不亦说乎?

学而不思则罔,思而不学则殆。


追求学问的道路曲折有致,必须有毅力,才能持久。《楚辞》描述的浓厚感情使我感慨良深。《离骚》中说:


亦余心之所善兮,虽九死其犹未悔。


《九章·抽思》中说:


惟郢路之辽远兮,魂一夕而九逝。


《离骚》中说:


路漫漫其修远兮,吾将上下而求索。


我在中学和大学时就注重培养气质。有好的气质,才能够有志趣去做大学问,孟子说:


我知言,我善养吾浩然之气。


有很多人认为自己不是天才,没有办法做大学问。请看曹丕所论:


譬诸音乐,曲度虽均,节奏同检,至于引气不齐,巧拙有素,虽在父兄,不能以移子弟。


但我认为,这是错误的看法。气质是可以改变的,下面的故事可以说明。《琴苑要录》中说:


伯牙学琴于成连,三年而成;至于精神寂寞,情之专一,未能得也。成连曰:“吾之学不能移人之情,吾师有方子春,在东海中。”乃赍粮从之,至蓬莱山,留伯牙曰:“吾将迎吾师。”刺船而去,旬时不返。伯牙心悲,延颈四望,但闻海水汩没,山林窈冥,群鸟悲号,仰天叹曰:“先生将移我情。”乃援琴作歌……


可见师友和读书的环境足以转变人的情怀雅志。我在中学、大学和研究院都深受良师益友的影响,后来才慢慢成长。

其实做学问,无论是自然科学还是文学,都有气质的问题,从文章中往往可以看出作者的修养。古代注重音乐,从乐声中可以看见国家的盛衰,也是同样的道理,《左传·季札观乐》中说:


吴公子札来聘,请观于周乐。使工为之歌《周南》《召南》,曰:“美哉!始基之矣,犹未也,然勤而不怨矣。”

……

为之歌《郑》,曰:“美哉!其细已甚,民弗堪也。是其先亡乎?”

为之歌《齐》,曰:“美哉!泱泱乎,大风也哉!表东海者,其大公乎?国未可量也!”

……

为之歌《大雅》,曰:“广哉!熙熙乎!曲而有直体,其文王之德乎?”


在培养我自己的气质时,我尽量观摩别人的长处。韩愈说:


师者,所以传道授业解惑也。


《论语》中说:


三人行,必有我师焉。


我觉得在与师友相交之际,需要言必及文,而最重要的乃是善于发问。“善待问者如撞钟,叩之以小者则小鸣,叩之以大者则大鸣。”历史上最著名的发问乃是屈原的《天问》:


遂古之初,谁传道之?上下未形,何由考之?……日月安属?列星安陈?


后来的学者很少有这种精神,这可能是中国科学不发达的一个原因。

善于发问后,才能寻找到自己的志趣所在,才能够择善而固执之。

很多同学开始时读书读得很好,后来就灰心了,不求上进,一方面是基础没有打好,又不敢重新学,另一方面是跟师友之间的关系没有搞好,言不及义,得不到精神上的支持。有些则是利欲熏心,不求上进。我有些学生毕业时很踏实,但受到表扬后,就以为自己了不起,事实上,他们的学问还没有成熟,就凋谢了。这都是因为气质和志趣没有培养好。《离骚》中说:


民生各有所乐兮,余独好修以为常。虽体解吾犹未变兮,岂余心之可惩。


《涉江》中说:


苟余心其端直兮,虽僻远之何伤。


《离骚》中说:


何昔日之芳草兮,今直为此萧艾也?岂其有他故兮,莫好修之害也!


韩愈作文的态度一直影响我做学问的方法,韩愈的《答李翊书》中说:


始者,非三代两汉之书不敢观,非圣人之志不敢存。处若忘,行若遗,俨乎其若思,茫乎其若迷。当其取于心而注于手也,惟陈言之务去,戛戛乎其难哉!……其观于人也,笑之则以为喜,誉之则以为忧,以其犹有人之说者存也。如是者亦有年,然后浩乎其沛然矣。吾又惧其杂也,迎而距之,平心而察之,其皆醇也,然后肆焉。虽然,不可以不养也。行之乎仁义之途,游之乎诗书之源。无迷其途,无绝其源,终吾身而已矣。


1966年,我进入香港中文大学。虽然对历史抱着浓厚的兴趣,但我还是选择了数学作为我的事业。

就在这时,中学时念的高等数学渐渐消化。刚开始,我还不大懂,但后来一下子全都懂了。我比班中同辈高明不少。

大学的数学使我大开眼界。连最基本的实数系统都可以严格地建立起来,这着实令人兴奋万分。当我了解数学是如此建构后,就写信给教授,表达我的喜悦之情。这是本人赏析数学之始。

一位刚从加州大学伯克利分校(UCB)毕业的博士来了香港,他名叫斯蒂芬·萨拉夫(Stephen Salaff)。他对我大为赞赏,我们合写了一本有关常微分方程的书。

另外一位老师布罗迪(Brody)来自普林斯顿,他有一套独特的教学法。他找来一本高深的数学著作,然后要求学生在书中找寻错误,并提出改正的方法。这是让我们不要盲目依赖书本的良方,同时也训练了我对书本上的定理采取存疑的态度。我有时将某些定理推广,并在课堂上说出自己的想法,他听了很高兴。

这些教导的重要性在于:培养独立思考的习惯;在人前表达数学的时候,找出自己的弱点,与同学和老师一同切磋。这不论对我当下做学问还是对我日后的教学都十分重要。

我虽然只读了三年大学,但已经完成了大学的课程。在萨拉夫教授的帮助下,我进入了加州大学伯克利分校研究院。加州大学伯克利分校的数学系当时在世界上是数一数二的。我8月入校,便认识了陈省身教授。他后来成为我的论文导师。

在香港时,我醉心于极度抽象的数学(当然,我的分析功夫也很扎实),觉得数学越广泛越好。我打算念泛函分析,已经学了不少这方面的东西,包括N. 邓福德(N. Dunford)和J. T. 施瓦茨(J. T.Schwartz)所著的三卷本巨著《线性算子》(Linear Operators),还有不少有关算子代数的书。到加州大学伯克利分校后,我认识了不少卓越的学者,我的看法改变了。

我如饥似渴地从他们那里学习各学科的知识。每天从早上8点到下午5点,我都在上课(有时在班里吃午饭)。这些学科包括拓扑、几何、微分方程、李群、数论、组合学、概率及动力系统。我并非科科都精通,但对某几门学问格外留神。学拓扑时,我发现它跟我以前学的完全不同。我们班上一共有50人,每个人看来都醒目在行,比我好多了。他们表现出色,说话条理分明。

于是,我埋首做好功课。不久之后,我发现自己也不赖。关键是要做好所有棘手的题目,并把这些题目想通想透。

我读了约翰·米尔诺(John Milnor)的一本书,对里面讲到的曲率的概念深深着迷。米尔诺是一位卓越的拓扑学者。我开始思考与这本书有关的问题,并大部分时间待在图书馆,读了不少书和期刊。当时的研究生并没有办公室。加州大学伯克利分校名牌教授不少,然而,不久之后,我对他们竟有英雄所见略同的感觉。

在加州大学伯克利分校的第二个学期,我渐渐能证出一些不简单的定理。这些定理与群论有关。在崇基书院,我跟老师聊天时曾谈及与之有关的内容,现在,我把它用到几何上去了。教授都为我的进展而惊讶不已,欣慰异常。其中一位教授开始与我合作,写了两篇论文。陈省身教授其时正在休年假。他回来时,对我的表现甚为嘉许。

纵然如此,对这些工作,我倒不觉得怎样。莫里(Charles B.Morrey)教授有关非线性偏微分方程的课令人难忘。他教授的非线性技巧当时并不流行。他的书也佶屈聱牙,但我隐隐感觉到他发展的技巧十分深奥,对未来几何学的发展举足轻重。我用心地学习这些技巧。虽在盛名之下,但听他课的学生和同事都不多。到学期终结时,我竟成为他班上唯一的学生。他索性就在自己的办公室里授课了。这一艰深的科目后来成为我数学生涯的基石。

完成几篇文章后,陈(省身)先生到处说我是何等出色,我感到,他实在是过分夸奖了我。我也开始全盘地思考数学,尤其是几何,也试图去研究几何学的其他问题,可是进度缓慢。这年夏天,老友郑绍远从香港过来了。我们在校园旁租了一所公寓,心情更加开朗了。

就在这个夏天,我请求陈先生当我的论文导师,他答应了。约一个月后,他告诉我,我在一年级时的文章已够格做毕业论文。我有点纳闷,心想这些工作还不够好,而且我还希望多学点东西。就这样,在第二个学年中,我学了不少复几何及拓扑的知识。陈师对我期望甚殷,他提议我考虑黎曼猜想。十分遗憾的是,到目前为止,我还没有想过它。

代之者,我尝试去了解空间的曲率。我确认卡拉比(Eugenio Calabi)在20世纪50年代提出的某建议,会是理解这个概念的关键。当时我不认为卡拉比是对的,开始对此深思苦想。这并不是当代几何学者研究的标准课题,很明显,这是分析学上的一道难题,没有人愿意跟它沾上边。

我渐渐地养成把分析作为工具引进几何中去的志趣。在此之前,曾有人把非线性理论用于三维空间的曲面上,但我考虑的是任意维数的抽象空间。由于莫里教授及陈师对极小曲面的兴趣,我亦对此项目深深着迷。我对调和映射尤其情有独钟,并因此钻研了变分法。

我对几何中的所有分析内容都感兴趣。简而言之,就是要把非线性微分方程和几何融为一体。要了解非线性方程,就必须先了解线性方程。因此,我建立了在流形上调和函数的主要定理。在我的影响下,郑绍远研究了有关的特征值及特征函数等问题。我们合作写了几篇重要的文章,它们到而今还是该项目的基础。

毕业时,我得到了几份聘书。陈师提议我去普林斯顿高等研究院,那儿的薪水不及哈佛大学提供的一半,但我还是到那儿去了。在高等研究院,我认识了其他科目的出色数学家,同时提升了对拓扑,尤其是空间对称理论的鉴赏力。事实上,我将分析的想法应用到流形上的群作用的课题,得出了这个科目的一些重要成果。

由于签证的问题,我到了纽约州立大学石溪分校。当时石溪是尺度几何的重镇,事实上,那儿真的不错,聚集了一批朝气蓬勃的几何学家。我学习他们的技巧,但并不认为那是几何的正确方向。一年后,我到了斯坦福大学,当时那里并没有几何学者。斯坦福环境安宁,在非线性偏微分方程领域很出色。在那里,我遇见好友利昂·西蒙(Leon Simon)及共同的弟子孙理察(Richard Schoen),我们一起拓展了在几何上的非线性分析。有如陶渊明所云:“久在樊笼里,复得返自然。”

我刚到斯坦福时,一个几何大会正在举行,有位物理学家应邀就广义相对论发言。当时我对物理还不算在行,但对他提及有关相对论的一个几何问题却一见倾心。赋予空间的数学解释,与空间物理导出数学问题,两者皆令人神往。

这个问题当时对我而言,还是遥不可及的,但我对它念念不忘。在会议期间,我找到了一个办法,去反证卡拉比猜想是错的。我提出了我的想法,反响似乎不错,没人提出异议。人们都松了口气,毕竟大家都猜对了,卡拉比猜想是不对的。

我与孙理察

两个月后,卡拉比教授写信给我,厘清了我的一些想法。我在自己的推理中找到一个严重的缺陷。在我的研究生涯中,这可以说是最痛苦的经历了。我辗转反侧,不能成眠。

我差不多两个星期都在失眠,眼见名誉因犯错(虽然我没把想法整理成文发表)而毁于一旦。反复仔细审阅每个步骤后,我相信问题反过来才对。为卡拉比猜想举出反例,其论据是先假设它是对的,然后考虑其后果。数年后,我解答了这个猜想,很多有关的自然推论就水到渠成了。

意识到卡拉比猜想是对的后,我便朝着正确的方向迈进。在准备最后的证明前,需要做大量的准备工作。我和郑绍远合作研究蒙日安培方程、仿射几何、极大曲面等相关问题。我与孙理察合作研究调和映射,与孙理察和西蒙合作研究极小曲面。在短短两年时间里,我们在与几何有关的非线性分析上硕果累累。这是几何学的黄金时代。

新婚伊始,我找到了完成卡拉比猜想的正确想法。我终于掌握了凯勒几何中曲率的概念了。一些老大难的代数几何问题,都因卡拉比猜想的证明而解决了。当我认为是我首先了解凯勒几何的曲率结构后,颇有物我相融的感觉:


落花人独立,微雨燕双飞。


这个工作影响至今,可以看《纽约时报》(2003年9月2日)的一篇报道《宇宙一悬案,众人答案殊》:


弦理论中的一个困难在于它要用十维的时空来描述,而我们生存的空间只有四维而已。施特罗明格(Strominger)博士回忆起他在找到数学家丘成桐博士的一篇论文时的万分喜悦之情。丘博士现任教于哈佛大学及香港中文大学。在这篇文章里,他证明了卡拉比博士提出的猜想。卡拉比博士现已从宾夕法尼亚大学退休。这个猜想指出,这些额外的维数虽然不可捉摸,但在微观下可以想象它们卷曲起来,就像地毯的小毛圈。


完成卡拉比猜想的证明后,我看出自己建立了融合两门重要科目——非线性偏微分方程和几何的架构。1976年,我在加州大学洛杉矶分校碰见老友米克斯(Meeks),他是我在研究院时的同学。他的境况不大好。米克斯是一位具有原创性的数学家,我向他提议合作,试图把极小曲面和三维流形的拓扑联系起来。

结果成绩斐然。我们解决了这两门科目中的两个经典难题:

(1)当一块肥皂膜的边界是凸时,膜面不能自相交。

(2)史密斯猜想(Smith conjecture)的证明。这是与瑟斯顿(William Paul Thurston)工作结合的成果。

一旦把方向校正了,很多经典问题便能迎刃而解。

次年,我回到加州大学伯克利分校访问,并组织了“几何上非线性问题”的研讨班。孙理察和郑绍远都在那儿。我和孙理察终于解决了那个让我念念不忘的有关广义相对论的难题。这道难题叫作正质量猜想,它在广义相对论中占基本的地位(只有当质量为正时,时空才能稳定)。

1978年,我又回到斯坦福。我们和萧荫棠一起,以极小曲面为工具,解决了复几何上有名的弗兰克尔猜想(Frankel conjecture)。我也以调和映射为工具去研究复几何和离散群的刚性问题。后来,萧荫棠在这方面有极大的贡献。这些想法迄今仍有其重要性。利用我们在广义相对论上的工作,孙理察和我研究了具正纯量曲率的流形的结构。

1979年,我们在普林斯顿高等研究院举办几何分析年。差不多所有几何学家都来了。我们为几何学厘定了发展的方向。我提出120个在几何里的有趣问题[3],到目前为止,有的已经解决,有的还是没有解决。20世纪70年代确实是几何学的丰收期。

到了20世纪70年代末,我在数学界可以说略有名望。对于我解决的难题,媒体也有广泛报道,然而,如果认为我的奋斗目标是奖项,是成名成家,那就不对了。这些都不是本人研究的首要目标。我对数学的兴趣,源于人类智能足以参悟自然的欣喜。从几何上看,大自然的美是永恒不朽的。

在与朋辈,如孙理察、西蒙、郑绍远、米克斯、乌伦贝克(K.Uhlenbeck)、汉密尔顿(R. Hamilton),以及稍后的唐纳森(S.Donaldson)、陶布斯(H. Taubes)、赫伊斯肯(G. Huisken)等人的共同努力下,几何上的非线性分析已汇成大流。它在探讨自然之美中的作用不容低估。晚近的进展更显示出它在物理及其他应用科学中的重要性。

当几个重要领域——几何、非线性分析、代数几何、数学物理自然地融合在一起后,经典的老大难题便会迎刃而解。解决难题可以被视为人们理解大自然的路灯柱。

但几何学实在超越了科学家的想象,它日新月异,观念层出不穷。伟大的数学家高斯曾说:


窃意以为几何之本,其真伪实非人类心智所能证明,亦非人类心智所能理解者,余意于此,日久弥坚。此等空间之属性,莫测高深,后之来者,或有灼见,得窥堂奥。惟今之世,吾辈宜视几何学与纯先验之算术为殊途,宜彼与力学并列也。


在过去10年间,我和合作伙伴致力于研究基本物理在几何中的作用。为了从物理中掌握动机后面的直观,我花了不少时间参加物理系举办的研讨班。在与理论物理学家的交往中,我们获得了数学上一些深刻的定理。其中重要的概念是所谓的对偶性。

对偶性这个概念优美典雅。它指出在某理论中的强作用等同于另一理论中的弱作用。这与中国道家谈阴阳有不少共通之处。但对偶性严格得多,同时它是定量的。利用它,我们可以算出某些数学量。如果用其他方法来进行,那是极度困难的。

新的理论物理和现代几何的密切结合使我们觉得几何学会有一个革命性的改进。正如高斯在二百年前的看法一样,希望我们在几何学中唯美的直观感受能够帮助了解自然界的基本问题。


为数学而数学,实属显然,何须三思。于无用诸物理学之种种数学理论,均需一视同仁,与其他理论无分轩轾。

——庞加莱(Henri Poincaré)



使余复稚年,童蒙初习,则愿从柏拉图之教诲,自数学始。

——伽利略



本文写于2004年。

[1] 丘成桐整理父亲的遗稿,汇总《西洋哲学史》,编成《丘镇英先生哲学史讲稿》,于2022年由中信出版社出版。——编者注

[2] 打书钉指看书。——编者注

[3] 此即著名的“丘成桐120问题”,其目标是指出几何分析的重要方向,以及重要的还没有解决的问题,这些问题影响了几何分析50多年来的发展。