
上QQ阅读APP看本书,新人免费读10天
设备和账号都新为新人
1.3.3 对偶式
在1.3.1节所列的等价关系式中,公式2)~9)都是由两个公式组成的,这些成对出现的公式称为对偶式。对偶式的定义如下。
定义1.3.3 在仅含有联结词、∧、∨的公式A中,将其中的∧换成∨、∨换成∧、1(或T)换成0(或F)、0(或F)换成1(或T),其他符号不变,得到的公式称为A的对偶式,记为A*。
由定义可以看出,A*的对偶式就是A,也就是对偶式是相互的。
例如,p∨q和p∧q、和
和
都互为对偶式。由于
,而
和
互为对偶式,所以p↑q和p↓q也互为对偶式。
设A(p1,p2,…,pn)和A*(p1,p2,…,pn)互为对偶式,其中p1,p2,…,pn是出现在A和A*中的全部的命题变元,则

例如,假设A(p,q)⇔p∧q,则
A*(p,q)⇔p∨q
而

所以

类似地,有

定理1.3.1 设A和B为两个命题公式,A和A*、B和B*互为对偶式,若A⇔B,则A*⇔B*。
证明 因为

若
A(p1,p2,…,pn)⇔B(p1,p2,…,pn)
则

即

则
A*(p1,p2,…,pn)⇔B*(p1,p2,…,pn)
◀
例1.3.9 求公式的对偶式。
解 公式A的对偶式A*为

公式是重言式,而1的对偶式是0,所以,由对偶原理可以直接得知重言式A的对偶式A*是矛盾式。