声波测试方法和工程应用(水科学博士文库)
上QQ阅读APP看本书,新人免费读10天
设备和账号都新为新人

1.4 声波的反射和折射

1.4.1 声阻抗的基本概念

正如电路中引入电阻抗一样,研究机械振动时,往往引入力阻抗的概念,研究声波传播时,也同样引入声阻抗这个概念。它定义为应力T(或声压p)对体积振速uA的比值,其中A为波束截面

img

研究声速截面积不变的情况下,使用声阻抗率的概念更为方便,它是声压对振速的比值:

img

一般说,阻抗率和阻抗都是复数。对于平面声波的情况,只考虑单向传播,则可推导出:

img

式中:α为衰减系数;K为波数,阻抗率Z为复数,其由介质特性所确定,称为介质的“特性阻抗”,用ZS表示。

对于无衰减的平面波情况,特性阻抗为实数:

img

此外,从能量观点来研究声波传播时,还往往采用声强I的概念,它是单位时间内通过单位面积传递的声能的平均值:

img

在前述无衰减平面声波的情况下,声强公式可简化为

img

式中:pm为声压的最大值。

1.4.2 声波的反射和折射

平面声波入射到密度和波速不同的两种介质分界面上时,根据反射定律和斯奈尔(Snell)折射定律,一部分能量的波反射回第一介质,且波的反射角等于入射角,另一部分能量的波进入第二介质,且入射角和折射角正弦之比等于两种介质的波速之比,这个比值称为第一介质对于第二介质的折射率。

1.垂直入射情况

声波传播途径如图1.8所示。

img

图1.8 波垂直入射二层介质模型

img
img

根据能量守恒定律,应有IA=I1A+I2A,垂直入射情况,截面A不变,故有I=I1+I2,即D+R=1。当两种介质的特性阻抗相差较远时,即Z1Z2(固体和气体的界面),或者Z1Z2(气体和固体界面),则有p1mpmI1=II2=0、D≈0,即波几乎全部反射,没有折射。因此,当声波在固体和气体分界面时,声波能量几乎100%被反射;当两种介质的特性阻抗相近时,即Z2=Z1R=0、D=1,声波能量几乎100%透射到第二种介质,入射波全部转变为透射波。图1.9为反射系数R、透射系数D与界面材料波阻抗的变化关系图。

img

图1.9 反射系数R、透射系数D与界面材料波阻抗的变化关系图

img

图1.10 波垂直入射三层介质模型

对于三层介质中的垂直入射情况,如图1.10所示,入射波、反射波和折射波之间仍服从反射及折射定律。但由于各层介质中波的叠加,情况较为复杂,计算公式有了一定的变化。设介质Ⅰ和介质Ⅲ间夹有厚度为d的介质Ⅱ,它们的特征阻抗分别为Z1Z2Z3。当第Ⅰ介质中沿x正向行进的声波垂直入射到分界A时,一部分能量反射回介质Ⅰ,与入射波叠加,另一部分能量透过界面A进入介质Ⅱ,但到达分界B后,又发生反射和折射,故在介质Ⅱ中存在正负方向波的叠加,只有一部分声波能量透过界面B进入介质Ⅲ。

不考虑介质的吸收衰减,根据界面AB的压强及振速的连续条件,可推导出第Ⅰ介质经由第Ⅱ介质至第Ⅲ介质的声压透射系数和声强透射系数:

img
img

式中:k2为通过第Ⅱ介质中的波数,k2=imgd为距离;λ2为第Ⅱ介质中声波波长。

声波检测中往往要求声波能穿透一定厚度的透声层,使得声波能量几乎能全部透过这层介质,这样研究波的穿透特性才具有实际意义。

当第Ⅰ介质和第Ⅲ介质的特性阻抗不相等时,即Z1Z3,为使D1—3=1,往往采用k2d=(2n+1img,即d=(2n+1imgn为正整数。这就是说要使第Ⅱ介质的厚度相当于其波长的奇数倍。为减少介质的吸收衰减,则应是厚度d为最小,即有d=img。代入式(1.45),有

img

D1-3=1,则

img

从式(1.46)可以知道,当Z1Z3时,为减少第二层介质对波的吸收衰减和波的反射,其条件是第二层介质的特性阻抗Z2为第一层介质特性阻抗Z1和第三层介质特性阻抗Z3的几何平均值,而其厚度为img波长。当Z1=Z3,则式(1.45)可变为

img

为使透射系数D=1,可采取三种方法。

第一种方法:令三层介质的特性阻抗相等,即z1=z2=z3

第二种方法:令sink2d=0,cosk2d=1,则有k2d=nπ,d=img,为减少第二层介质的吸收衰减,其厚度为最小,则d=img,称“半波透声层”。

第三种方法:令k2d≤0,则k2d≪1。这就要求dλ2,亦即用尽可能使d→0,所以叫“薄膜透声层”。

2.斜入射的情况

对于两种半无限平面流体分界面的情况,入射波以入射角为θ角斜入到分界面上,将发生反射和折射,如图1.11所示,反射波将按反射角θ1的方向返回第一介质,折射波将按折射角θ2的方向在第二介质中传播,并满足斯奈尔定律,有

img
img

图1.11 波斜入射的二层介质模型

当上述公式中θ=0°时,则上述公式简化为垂直入射情况相应的公式。

c2c1时,入射角有一临界角θc,即当θ=θc时,折射角θ2=90°,此时有

img

当入射角大于临界角,即θθc时,在界面上只产生反射波,而无折射波,称为“全反射”。

对于两种半无限平面固体分界面的情况,入射波以入射角为θ角斜入到分界面上,除产生与入射波同类型的反射波和折射波外,还发生波的转换。设界面为XOY,即Y平面,如图1.12所示。

img

图1.12 反射和折射示意图

在纵波斜入射的情况下,一般说来有两种折射波,两种反射波。为便于区分,用下标PS分别代表P波和S波,下标1和下标2分别代表第一层介质和第二层介质。利用分界面的应力和振速满足连续条件,则可推导出下述三种情况下折射波、反射波和入射波之间的关系:

第一种情况:当入射波为P波根据界面的应力与振速连续条件、波的反射定律和折射定律,可得到入射波、折射波和反射波传播方向的关系:

img

在任何介质中,纵波速度均大于横波速度,即cPcS。因此,当c1Pc2P时,除θ1P=θP外,其余θ1Sθ2Pθ2S均小于θP。表明:纵波斜入射到两介质的分界面时,将产生反射纵波、反射横波以及折射纵波和折射横波。

θPθcP(第一临界角)时,无折射纵波。

img

θPθcS(第二临界角),无折射横波。

img

第二种情况:入射波为横波,其振动方向垂直于xoy平面,沿Y轴方向的法向应力和振速满足连续条件,则只产生反射横波和折射横波,不产生转换纵波。

第三种情况:入射波为横波,振动方向在xoy平面内法向方向和切向方向均满足应力和振速的连续条件,波的传播方向关系:

img

从式(1.48)可以看出,反射横波总是存在的,但在下面三种临界角情况下,不会产生反射纵波、折射纵波,甚至不会产生折射横波

当横波入射角大于反射纵波临界角,即θSθc1,无反射纵波。

img

当横波入射角大于折射纵波临界角,即θSθcP,无折射纵波。

img

当横波入射角大于折射横波临界角,即θSθcS,无折射纵波和折射横波。

img

对于固体和流体的分界面,由于横波不能在流体中传播,故当第一层介质为流体时,在界面处无反射横波,只有反射纵波;当第二层介质流体时,则界面处可能产生反射横波、反射纵波和折射纵波。