![经济数学—概率论与数理统计学习辅导(高等学校经济管理数学基础辅导系列)](https://wfqqreader-1252317822.image.myqcloud.com/cover/400/23912400/b_23912400.jpg)
三、习题解答
(A)
1.已知随机变量X服从0-1分布,并且P{X≤0}=0.2,求X的概率分布.
解 X只取0与1两个值,P{X=0}=P{X≤0}-P{X<0}=0.2, P{X=1}=1-P{X=0}=0.8.
2.一箱产品20件,其中有5件优质品,不放回地抽取,每次一件,共抽取两次,求取到的优质品件数X的概率分布.
解 X可以取0,1,2三个值.由古典概型概率公式可知
![](https://epubservercos.yuewen.com/1A97F7/12738942104014106/epubprivate/OEBPS/Images/figure_0063_0003.jpg?sign=1739331372-5cG1W8pNAv6D6eSNmJogk3oaZNYb3uqA-0-8ad51bd383af5736d5d357e6337f7f22)
依次计算得X的概率分布如下表所示:
![](https://epubservercos.yuewen.com/1A97F7/12738942104014106/epubprivate/OEBPS/Images/figure_0063_0004.jpg?sign=1739331372-UPmvdqmBudA6BycgxEr05hCswrzOy5i9-0-b847063d23d25cd8b28e2a578bb492f8)
3.上题中若采用重复抽取,其他条件不变,设抽取的两件产品中,优质品为X件,求随机变量X的概率分布.
解 X的取值仍是0,1,2.每次抽取一件取到优质品的概率是1/4,取到非优质品的概率是3/4,且各次抽取结果互不影响,应用伯努利公式有
![](https://epubservercos.yuewen.com/1A97F7/12738942104014106/epubprivate/OEBPS/Images/figure_0063_0005.jpg?sign=1739331372-MvvBP7Bpt7jOkvzF6ZFw8v3kAhtOGSjd-0-a14625a9089b8768dce0cd25e1b7f94a)
4.第2题中若改为重复抽取,每次一件,直到取到优质品为止,求抽取次数X的概率分布.
解 X可以取1,2, …可列个值.且事件{X=m}表示抽取m次前m-1次均未取到优质品且第m次取到优质品,其概率为.因此X的概率分布为
![](https://epubservercos.yuewen.com/1A97F7/12738942104014106/epubprivate/OEBPS/Images/figure_0063_0007.jpg?sign=1739331372-46ipjfaTBjYyN5WJ0GFiY4c5SOuFdEHO-0-ddf2360e0ac5866c6a5bef2d73002b97)
5.盒内有12个乒乓球,其中9个是新球,3个为旧球,采取不放回抽取,每次一个直到取得新球为止,求下列随机变量的概率分布:
(1)抽取次数X;
(2)取到的旧球个数Y.
解 (1)X可以取1,2,3,4各值,则有
![](https://epubservercos.yuewen.com/1A97F7/12738942104014106/epubprivate/OEBPS/Images/figure_0064_0001.jpg?sign=1739331372-IVOnJuLMKAFdxIJolsW8ZOz602ljYR8M-0-c1ab50037885268a8282636620e4d879)
(2)Y可以取0,1,2,3各值.
P{Y=0}=P{X=1}=0.75,
P{Y=1}=P{X=2}≈0.2045,
P{Y=2}=P{X=3}≈0.0409,
P{Y=3}=P{X=4}≈0.0045.
6.上题盒中球的组成不变,若一次取出3个,求取到的新球数目X的概率分布.
解 X可以取0,1,2,3各值,则有
![](https://epubservercos.yuewen.com/1A97F7/12738942104014106/epubprivate/OEBPS/Images/figure_0064_0002.jpg?sign=1739331372-Byl1gDPqugxUqfO4JSIhLNheFjCTvImN-0-0db2fa58c6103b8b72720ef1a2b21679)
7.将3人随机地分配到5个房间去住,求第一个房间中人数的概率分布和分布函数.
解 用X表示第一个房间中的人数,则其可能的取值为0,1,2,3.分别算得
![](https://epubservercos.yuewen.com/1A97F7/12738942104014106/epubprivate/OEBPS/Images/figure_0064_0003.jpg?sign=1739331372-CYyTZohFtyBdAYt1kBO0AFvJ1Phg6ZZA-0-3a73ee3b73925e94aac10e9f04ded3c0)
故X的分布函数为
![](https://epubservercos.yuewen.com/1A97F7/12738942104014106/epubprivate/OEBPS/Images/figure_0065_0001.jpg?sign=1739331372-10OdTA30UsxeermrcuKVt9oecDo3rZH2-0-5b7fece7dfa80ff50159de0a2f9772fa)
8.袋中装有n个球,分别编号为1,2, …, n,从中任取k(k≤n)个,求取出的k个球最大编号的概率分布.
解 用X表示k个球的最大编号,则X可能的取值为k, k+1, …, n.考虑随机事件{X=l},总样本点数为,若k个球的最大编号是l,编号是l的球一定被取出,剩下k-1个球从编号为1,2, …, l-1的l-1个球中取,共
种取法,所以随机事件{X=l}所包含的样本点数为
,由古典概型概率公式得
![](https://epubservercos.yuewen.com/1A97F7/12738942104014106/epubprivate/OEBPS/Images/figure_0065_0005.jpg?sign=1739331372-COfcBoBS2MhlRtIVQXSyVZSAglLQx08L-0-bf380e5be0ae1930fa86720f624e2799)
9.已知P{X=n}=pn, n=2,4,6, …,求p的值.
解 由题意可知
![](https://epubservercos.yuewen.com/1A97F7/12738942104014106/epubprivate/OEBPS/Images/figure_0065_0006.jpg?sign=1739331372-BNP4hrsmQhUCqf6GPIzRUuu1DydYIOkE-0-ef8a5d6b951dd0125dc2a0fc0ac06597)
解得
![](https://epubservercos.yuewen.com/1A97F7/12738942104014106/epubprivate/OEBPS/Images/figure_0065_0007.jpg?sign=1739331372-6raUpnqUbYxaOePWUpDr8UsjnrfPGoAL-0-7b33409702a7fed2a254b4c1d5ab9be4)
10.已知P{X=n}=cn, n=1,2, …,100,求c的值.
解 由题意可知
![](https://epubservercos.yuewen.com/1A97F7/12738942104014106/epubprivate/OEBPS/Images/figure_0065_0008.jpg?sign=1739331372-U8rwg22KQ3ZEwyXeUzb2Rpk0CsuRBCGX-0-be261d1e77b8ebafe20f1a3d30840b8f)
解得
![](https://epubservercos.yuewen.com/1A97F7/12738942104014106/epubprivate/OEBPS/Images/figure_0065_0009.jpg?sign=1739331372-IJFDDEvCo4X6jFW4g2C1cTHNjrST2LW7-0-56d5af8fe19462ef8a70bee45b519dc5)
11.已知 , …,且λ>0,求常数c.
解 由题意知
![](https://epubservercos.yuewen.com/1A97F7/12738942104014106/epubprivate/OEBPS/Images/figure_0065_0011.jpg?sign=1739331372-1rC3KCPedt7uAK5VJEtg8DngJbtvoXn8-0-1a0bde39105d8299f96bd18dab342beb)
由于
![](https://epubservercos.yuewen.com/1A97F7/12738942104014106/epubprivate/OEBPS/Images/figure_0065_0012.jpg?sign=1739331372-ES7CInucBmSBiZhJbsMTUtRTUNjyo0Dg-0-f3b488a266f430323ee932d29bbcf586)
所以有
![](https://epubservercos.yuewen.com/1A97F7/12738942104014106/epubprivate/OEBPS/Images/figure_0065_0013.jpg?sign=1739331372-RWwVAE93RjXSquevitwzv0byAKKolA1D-0-449776e656fc871599d1cec004382ef0)
解得
![](https://epubservercos.yuewen.com/1A97F7/12738942104014106/epubprivate/OEBPS/Images/figure_0065_0014.jpg?sign=1739331372-We13KNjs5ORgywg2G72NtvalciYZAp22-0-f1982a2123a36e2e597a8db26c4529cd)
12.某人任意抛硬币10次,写出出现正面次数的概率分布,并求出现正面次数不小于3及不超过8的概率.
解 用X表示抛10次出现正面的次数,则X可能的取值为0,1,2, …,10.
![](https://epubservercos.yuewen.com/1A97F7/12738942104014106/epubprivate/OEBPS/Images/figure_0066_0001.jpg?sign=1739331372-5cAfBwhfGUeCfZMC7aY4JFK4VhPX5TeZ-0-81c51616a901bdc874e3db2003a46bf7)
13.甲、乙二人轮流投篮,甲先开始,直到有一人投中为止,假定甲、乙二人投篮的命中率分别为0.4及0.5,求:
(1)二人投篮总次数Z的概率分布;
(2)甲投篮次数X的概率分布;
(3)乙投篮次数Y的概率分布.
解 设事件Ai(i=1,3,5, …)表示“在第i次投篮中甲投中”, Bj(j=2,4,6, …)表示“在第j次投篮中乙投中”,且A1, B2, A3, B4, …相互独立.
![](https://epubservercos.yuewen.com/1A97F7/12738942104014106/epubprivate/OEBPS/Images/figure_0066_0002.jpg?sign=1739331372-WJOmMFF6wFTesKry4X3IFah2kZYQMUcr-0-41598fc838e76269f53463bdee427a10)
14.一条公共汽车路线的两个站之间,有四个路口处设有信号灯,假定汽车经过每个路口时遇到绿灯可顺利通过,其概率为0.6,遇到红灯或黄灯则停止前进,其概率为0.4,求汽车开出站后,在第一次停车之前已通过的路口信号灯数目X的概率分布(不计其他因素停车).
解 X可以取0,1,2,3,4,分别得到
P{X=0}=0.4, P{X=1}=0.6 × 0.4=0.24,
P{X=2}=0.6 2 × 0.4=0.144,
P{X=3}=0.6 3 × 0.4=0.0864,
P{X=4}=0.6 4=0.1296.
15.已知
![](https://epubservercos.yuewen.com/1A97F7/12738942104014106/epubprivate/OEBPS/Images/figure_0066_0003.jpg?sign=1739331372-5MTQYSIv2o8tGGRNmpAVEpUliEkWFi2I-0-bdd8483588f98ff90bd0061cc5d6fae9)
问f(x)是否为密度函数.若是,确定a的值;若不是,说明理由.
解 如果f(x)是密度函数,则f(x)≥0,因此a≥0,但是,当a≥0时,
![](https://epubservercos.yuewen.com/1A97F7/12738942104014106/epubprivate/OEBPS/Images/figure_0067_0001.jpg?sign=1739331372-oDD8HYjG8OmqMujVZuXHtu6ZQGcflnM9-0-e606863084b7233eb521221cdeae81ed)
由于不等于1,因此f(x)不是密度函数.
16.某种电子元件的寿命X是随机变量,概率密度为
![](https://epubservercos.yuewen.com/1A97F7/12738942104014106/epubprivate/OEBPS/Images/figure_0067_0003.jpg?sign=1739331372-u6KRX7HHmWtAKTeAEsxckRJOi2N3LtPu-0-47504296908247c3b4753d562cbfc18e)
3个这种元件串联在一个线路上,计算这3个元件使用了150h后仍能使线路正常工作的概率.
解 串联线路正常工作的充分必要条件是3个元件都能正常工作.而3个元件的寿命是3个相互独立同分布的随机变量,因此若用事件A表示“线路正常工作”,则
![](https://epubservercos.yuewen.com/1A97F7/12738942104014106/epubprivate/OEBPS/Images/figure_0067_0004.jpg?sign=1739331372-YJd8Md888EP0iCMz9MYq3f44z4oqwJvN-0-bdd46271e3603b0eab693a1ff21a0eb4)
17.设随机变量X~f(x), f(x)=Ae-|x|.试确定系数A并计算P{|X|≤1}.
![](https://epubservercos.yuewen.com/1A97F7/12738942104014106/epubprivate/OEBPS/Images/figure_0067_0005.jpg?sign=1739331372-wA3nVvEvAsUu6JOJvHRPr2WHl3lGGOBb-0-129ada7a3af67d589b386d6409c0759d)
解得,故
![](https://epubservercos.yuewen.com/1A97F7/12738942104014106/epubprivate/OEBPS/Images/figure_0067_0007.jpg?sign=1739331372-cBWgX47viRQ4MQ6JNyS6Lnea7L5rYc3B-0-53efc803cecd75ab051bc328298a7f97)
18.设X的概率密度为
![](https://epubservercos.yuewen.com/1A97F7/12738942104014106/epubprivate/OEBPS/Images/figure_0067_0008.jpg?sign=1739331372-QXdi4ZAE8H2M4J0EvQ47XAHVFQjh7ywx-0-c31d17bf72fa9cb5194c98f41093119e)
(1)确定常数c;(2)计算; (3)写出分布函数.
解(1)解得
.
![](https://epubservercos.yuewen.com/1A97F7/12738942104014106/epubprivate/OEBPS/Images/figure_0067_0011.jpg?sign=1739331372-doSHHcfxknmVzRD3mq4GAKK4Mur6XR1G-0-4ec5adb1361a15e676f8c76225973f7d)
(3)当x≤-1时,F(x)=0;当x≥1时,F(x)=1;当-1<x<1时,
![](https://epubservercos.yuewen.com/1A97F7/12738942104014106/epubprivate/OEBPS/Images/figure_0068_0001.jpg?sign=1739331372-YDJbDtdRDB6cnvrNXaIzsTBUx6TCfQT9-0-2793809307a251d37a6c12069d72bb57)
19.设X的概率密度为
![](https://epubservercos.yuewen.com/1A97F7/12738942104014106/epubprivate/OEBPS/Images/figure_0068_0002.jpg?sign=1739331372-7S2U9KSYBS83MJOfj9naQFrNUeQrrmMO-0-44dde53ad72508f48ee07e81445256cc)
(1)确定常数c;(2)计算; (3)写出分布函数.
![](https://epubservercos.yuewen.com/1A97F7/12738942104014106/epubprivate/OEBPS/Images/figure_0068_0004.jpg?sign=1739331372-FiC7xIopyeiENNR5xCD2Z6mgIbk3fqu6-0-cd4ce86ccb447cf0131bc74901ff9a28)
故c=1π.
![](https://epubservercos.yuewen.com/1A97F7/12738942104014106/epubprivate/OEBPS/Images/figure_0068_0005.jpg?sign=1739331372-q2T3nQaECeO6LL0stl1SmoDxwDpwsj47-0-28669fa5373e3c538ea691bcc38360fd)
(3)当x≤-1时,F(x)=0;当x≥1时,F(x)=1;当-1<x<1时,
![](https://epubservercos.yuewen.com/1A97F7/12738942104014106/epubprivate/OEBPS/Images/figure_0068_0006.jpg?sign=1739331372-NyFiQVadyNc5W4BVUKf7rSxJBlILSJyC-0-6b55321290a1fe6b7959618fb16eaf7a)
20.设连续型随机变量X的分布函数F(x)为
![](https://epubservercos.yuewen.com/1A97F7/12738942104014106/epubprivate/OEBPS/Images/figure_0068_0007.jpg?sign=1739331372-FWshnnfdhb9OI6BsyGNZa0ec8UNrLJkz-0-027dde78ff0a2526a1c7764570fdb250)
(1)确定系数A; (2)计算P{0≤X≤0.25}; (3)求概率密度f(x).
解(1)连续型随机变量X的分布函数是连续函数,F(1)=F(1-0),则有A=1.
(2)P{0≤X≤0.25}=F(0.25)-F(0)=0.5.
![](https://epubservercos.yuewen.com/1A97F7/12738942104014106/epubprivate/OEBPS/Images/figure_0068_0008.jpg?sign=1739331372-2NxwXDb1w7TFE2KetJiGPZRRtw4PmBlV-0-fcae20bda50df571161474cebb12d4a1)
21.随机变量X的分布函数F(x)为
![](https://epubservercos.yuewen.com/1A97F7/12738942104014106/epubprivate/OEBPS/Images/figure_0068_0009.jpg?sign=1739331372-9yue7XPEwtul4q3mVcxEqLIPfnkjL6ZV-0-364b39ff9e802efe78a5b8920f052630)
试确定常数A的值并计算P{0≤X≤4}.
解 由F(2+0)=F(2),可得,故A=4,且
P{0≤X≤4}=P{0<X≤4}=F(4)-F(0)=0.75.
22.设X的分布函数为
![](https://epubservercos.yuewen.com/1A97F7/12738942104014106/epubprivate/OEBPS/Images/figure_0069_0001.jpg?sign=1739331372-0gIznmDJYXtLkTBylwxZe80EfGQdXsTx-0-95dcc035facb02bf84781e9f848364d2)
(1)确定常数A; (2)计算P{|X|<2}; (3)求概率密度f(x).
解 (1)由F(0+0)=F(0),可得0=A-1,故A=1.
(2)P{|X|<2}=F(2)-F(-2)=1-e-4.
![](https://epubservercos.yuewen.com/1A97F7/12738942104014106/epubprivate/OEBPS/Images/figure_0069_0002.jpg?sign=1739331372-414LFv1xna1b8CVy6grXTvAG5JGc3VUl-0-0f81ee1798ffd4e7b875c54918c5d6eb)
23.设X的分布函数为
F(x)=A+Barcta nx, -∞ <x<+∞.
(1)确定常数A, B; (2)计算P{|X|<1}; (3)求概率密度f(x).
解 (1) ,可得
![](https://epubservercos.yuewen.com/1A97F7/12738942104014106/epubprivate/OEBPS/Images/figure_0069_0004.jpg?sign=1739331372-4wvVkO3svB1NUWljc6kYqIi8dMZ7EySF-0-69651021600dc9d59e7425247d670203)
![](https://epubservercos.yuewen.com/1A97F7/12738942104014106/epubprivate/OEBPS/Images/figure_0069_0005.jpg?sign=1739331372-qaCzbAzcqj9Fytsf8K5ZgrUeHZwoUxCl-0-a10de11780b1045893607a2245e8ed64)
24.设X的概率密度为
f(x)=Ae-|x|, -∞<x<+∞.
(1)确定常数A; (2)求分布函数f(x); (3)计算X落在(0,1)内的概率.
解 (1)由第17题,有.
![](https://epubservercos.yuewen.com/1A97F7/12738942104014106/epubprivate/OEBPS/Images/figure_0069_0007.jpg?sign=1739331372-gKAZmD9j7Yog95Z951n2eBk3GvoEbeEj-0-b69860b4b2bfdede6a165506e24c6d0b)
(3)当x<0时,有
![](https://epubservercos.yuewen.com/1A97F7/12738942104014106/epubprivate/OEBPS/Images/figure_0069_0008.jpg?sign=1739331372-gbdGS3iDdG1bYnMvRcznljm4cpF3qURF-0-8032e2c9c9211c80d77d6f88fbe45aaa)
当x≥0时,有
![](https://epubservercos.yuewen.com/1A97F7/12738942104014106/epubprivate/OEBPS/Images/figure_0069_0009.jpg?sign=1739331372-q7XOIjUYOKSEdxG1qmsV9f6Gn41yuPXw-0-424b482468fb7a29c8307b54479dd58c)
故
![](https://epubservercos.yuewen.com/1A97F7/12738942104014106/epubprivate/OEBPS/Images/figure_0069_0010.jpg?sign=1739331372-yoNOQljMTorqPcBEuWSdBeUoFKOQWTtZ-0-a0982f0a9d533463440c242d4fe77bf2)
25.随机变量 ,试确定A的值并求分布函数F(x).
解 ,因此
,所求分布函数为
![](https://epubservercos.yuewen.com/1A97F7/12738942104014106/epubprivate/OEBPS/Images/figure_0070_0002.jpg?sign=1739331372-exFxVA50nbYaYl9d2XYYzMOco4tk1Vjw-0-1f39dd8b70076d52e1dd385d2ca82951)
26.随机变量X~f(x),其中
![](https://epubservercos.yuewen.com/1A97F7/12738942104014106/epubprivate/OEBPS/Images/figure_0070_0003.jpg?sign=1739331372-4yGBeXUg0d1MQ9f4lYVvO1hyIP30OUf6-0-753283c13f679c65c01c562fdc19b6b0)
试确定a的值并求分布函数F(x).
![](https://epubservercos.yuewen.com/1A97F7/12738942104014106/epubprivate/OEBPS/Images/figure_0070_0004.jpg?sign=1739331372-Vo3WDITKBi0ntGoFzh67nIkBME1DXUYx-0-84883b66817238ebe5c1fbd072bc94cf)
因此a=π.当0<x<π时,有
![](https://epubservercos.yuewen.com/1A97F7/12738942104014106/epubprivate/OEBPS/Images/figure_0070_0005.jpg?sign=1739331372-5JrM53CNlhrbJzqC0aYyfz9ilso44MQi-0-8c16347925f8f286c091fc21c57d86ad)
27.随机变量X的分布函数为
![](https://epubservercos.yuewen.com/1A97F7/12738942104014106/epubprivate/OEBPS/Images/figure_0070_0006.jpg?sign=1739331372-PIZZhnvpKKb8ep3Zn8UDHkgc3bInohQ9-0-26541da295c0c8dd6ef9b9718377ad0b)
求X的概率密度,并计算
解 当x≤0时,X的概率密度为f(x)=0;当x>0时,
![](https://epubservercos.yuewen.com/1A97F7/12738942104014106/epubprivate/OEBPS/Images/figure_0070_0008.jpg?sign=1739331372-bTuhljISvdnL6xL3pAK8wJEVrvQpaCh5-0-35c75169685172911ca4b450feac1b25)
故
![](https://epubservercos.yuewen.com/1A97F7/12738942104014106/epubprivate/OEBPS/Images/figure_0070_0009.jpg?sign=1739331372-uCyQfJajLnKUgHF5V8IqxOsPWH9DiiCO-0-da5155c98ed8bb935916e59259fc6dc2)
28.某公共汽车站,每隔8分钟有一辆汽车通过,乘客到达汽车站的任一时刻是等可能的,求乘客到达汽车站后候车时间不超过3分钟及至少5分钟的概率.
解 用X表示乘客到达汽车站后候车时间,则X~U(0,8).X的分布函数为
![](https://epubservercos.yuewen.com/1A97F7/12738942104014106/epubprivate/OEBPS/Images/figure_0070_0010.jpg?sign=1739331372-zETJXX59rsTFwMjOSM2XrUvDYsxgKE2Y-0-99ef243868258a51a006e01030405cf4)
![](https://epubservercos.yuewen.com/1A97F7/12738942104014106/epubprivate/OEBPS/Images/figure_0071_0001.jpg?sign=1739331372-MRTG9ZsoAuqU2AindCfYvBTicVNEpGzX-0-9225b5fbffa9d04d46d7cf59f7a52586)
29.设ξ~U(0,10),求方程x 2+ξx+1=0有实根的概率.
解 ξ的分布函数为
![](https://epubservercos.yuewen.com/1A97F7/12738942104014106/epubprivate/OEBPS/Images/figure_0071_0002.jpg?sign=1739331372-arNA5A2G3ffOxOYkBgJR2kFIqFQXqgtA-0-989c430c53cb79a539e86fbe7b782c88)
方程x2+ξx+1=0当ξ2-4≥0时有实根,故
![](https://epubservercos.yuewen.com/1A97F7/12738942104014106/epubprivate/OEBPS/Images/figure_0071_0003.jpg?sign=1739331372-251zM5Jii1L9hlacavrCPzASzmxRlDLW-0-57e4ec255c347caa701903b916eb7dfd)
30.一批产品中有15%的次品,逐个进行返样抽取检查,共抽取20个样品,问取出的20个样品中最可能有几个次品,并求相应的概率.
解 用X表示抽取20个样品中的次品的件数,由于(20+1)×0.15=3,则取出的20个样品中最可能有3个次品,且
![](https://epubservercos.yuewen.com/1A97F7/12738942104014106/epubprivate/OEBPS/Images/figure_0071_0004.jpg?sign=1739331372-C0DmoEBUT7glcvTqIl8phZAwutKgcEh3-0-92aff846fa2cc31be7cbd9df31e5efb3)
31.在1000件产品中含有15件次品,现从中任取6件产品,分别求其中恰含有2件次品和不含次品的概率.
解 用X表示抽取的6件产品中次品的件数,次品率为0.015,故X近似地服从二项分布B(6,0.015),
![](https://epubservercos.yuewen.com/1A97F7/12738942104014106/epubprivate/OEBPS/Images/figure_0071_0005.jpg?sign=1739331372-gK4aFaO56mV2zSiGIjEPhVmUfA6H7gy0-0-f393a060e291d8d4436893f83c85e24c)
32.电话交换台每分钟接到呼唤的次数服从泊松分布P(3),求一分钟内接到4次呼唤、不超过5次呼唤和至少3次呼唤的概率.
解 用X表示每分钟接到的呼唤次数,则X服从泊松分布P(3),即有
![](https://epubservercos.yuewen.com/1A97F7/12738942104014106/epubprivate/OEBPS/Images/figure_0071_0006.jpg?sign=1739331372-kKPyr8MmTPRneQ8SZQdrBTaoydvBREAs-0-c85c8cf4a05d25eb02136d2a4d00f435)
查表得
![](https://epubservercos.yuewen.com/1A97F7/12738942104014106/epubprivate/OEBPS/Images/figure_0071_0007.jpg?sign=1739331372-kFViRzPsKVGoE7V1nAVQTnUneT1XhUlU-0-7436ee776265f0e376185a04f4ebb683)
33.设书籍中每页的印刷错误服从泊松分布,经统计发现在某本书上,有1个印刷错误的页数与有2个印刷错误的页数相同,求任意检验4页,每页上都没有印刷错误的概率.
解 设一页书上印刷错误为X,4页中没有错误的页数为Y,依题意有
P{X=1}=P{X=2},
即
![](https://epubservercos.yuewen.com/1A97F7/12738942104014106/epubprivate/OEBPS/Images/figure_0071_0008.jpg?sign=1739331372-9Afw1MGgdWG6yiESoOLwWyXWz7gBvOUB-0-a8b665e7434dde40b9274b3613c06567)
解得λ=2,即X服从λ=2的泊松分布.
每页上没有印刷错误的概述是
p=P{X=0}=e-2,
显然Y~B(4, e-2),故
P{Y=4}=p4=e-8.
34.每个粮仓内老鼠数目服从泊松分布,若已知一个粮仓内,有1只老鼠的概率为有2只老鼠的概率的2倍,求粮仓内无鼠的概率.
解 设X为粮仓内老鼠数目,依题意有
P{X=1}=2P{X=2},
即
![](https://epubservercos.yuewen.com/1A97F7/12738942104014106/epubprivate/OEBPS/Images/figure_0072_0001.jpg?sign=1739331372-updxnDYfNyovTg7YS2vcj05QfDLgFtpt-0-33a3d24a9a825f99a47b2290a9848d75)
解得λ=1, P{X=0}=e-1.
35.上题中条件不变,求10个粮仓内有老鼠的粮仓不超过2个的概率.
解 接上题,设10个粮仓中有老鼠的粮仓的数目为Y,则Y~B(10, p),其中
p=P{X>0}=1-P{X=0}=1-e-1, q=e-1.
P{Y≤2}=P{Y=0}+P{Y=1}+P{Y=2}=e-8(36e-2-80e-1+45).
36.随机变量X服从参数为0.7的0-1分布,求X2, X2-2X的概率分布.
解 X2仍服从0-1分布,且
P{X2=0}=P{X=0}=0.3,
P{X2=1}=P{X=1}=0.7.
X2-2X的取值为-1与0,则
P{X2-2X=0}=P{X=0}=0.3,
P{X2-2X=-1}=1-P{X=0}=0.7.
37.设X的概率分布为
![](https://epubservercos.yuewen.com/1A97F7/12738942104014106/epubprivate/OEBPS/Images/figure_0072_0002.jpg?sign=1739331372-tlomj4UR0ZccjxqUh0Pa0BTv9WNo4krf-0-6aed1bdc34b93929b3806409131bfc30)
求3X+2和2X2-1的概率分布.
解 P{3X+2=-1}=P{X=-1}=0.1,
P{3X+2=2}=P{X=0}=0.2,
P{3X+2=5}=P{X=1}=0.3,
P{3X+2=17}=P{X=5}=0.4.
P{2X2-1=1}=P{X=-1}+P{X=1}=0.4,
P{2X2-1=-1}=P{X=0}=0.2,
P{2X2-1=49}=P{X=5}=0.4.
38.从含有3件次品的12件产品中任取3件,设其中次品数为X,求2X+1的概率分布.
解 X可能的取值为0,1,2,3,则有
![](https://epubservercos.yuewen.com/1A97F7/12738942104014106/epubprivate/OEBPS/Images/figure_0073_0001.jpg?sign=1739331372-CJxNt5ostPPSyvE2zRDvI5VSJ5C6FpbM-0-c9fda210dc92219eca268fa302fbae75)
39.已知 , Y=lgX,求Y的概率分布.
解 Y的取值为±1, ±2, …,则
![](https://epubservercos.yuewen.com/1A97F7/12738942104014106/epubprivate/OEBPS/Images/figure_0073_0003.jpg?sign=1739331372-zSPSALOJY5iRZlpBJudkrZJR3eKiKvX1-0-3bcaa25d2d73f56840e9f653d10894f0)
40.X服从[a, b]上的均匀分布,Y=aX+b, (a≠0),求证Y也服从均匀分布.
证明 X的密度函数为
![](https://epubservercos.yuewen.com/1A97F7/12738942104014106/epubprivate/OEBPS/Images/figure_0073_0004.jpg?sign=1739331372-kZ5RytbuxwgA7BgBztHPgNBB5h4xuzRY-0-12235daf1dd71e4186168a58ec0a1caa)
Y的密度函数为
![](https://epubservercos.yuewen.com/1A97F7/12738942104014106/epubprivate/OEBPS/Images/figure_0073_0005.jpg?sign=1739331372-0oL0wlgnaFbbX9GRUnDZVXYDOv9j80ch-0-b084880a49555a28faeba905ba20fc43)
当a>0时,有
![](https://epubservercos.yuewen.com/1A97F7/12738942104014106/epubprivate/OEBPS/Images/figure_0073_0006.jpg?sign=1739331372-9DfPfnYzQkbUpaqKd254xA8XlsQPh9Sd-0-084ebce50fc862ba51cd5ef3005ece14)
当a<0时,有
![](https://epubservercos.yuewen.com/1A97F7/12738942104014106/epubprivate/OEBPS/Images/figure_0073_0007.jpg?sign=1739331372-udrJtuzHq6EHhCF9ula3H7sd8cwPofG6-0-055e40af78f70c93dddfefc564bc97e8)
41.随机变量服从 上的均匀分布,Y=cosX,求Y的概率密度.
解 显然y=cosx在 上单调,在(0,1)上有
![](https://epubservercos.yuewen.com/1A97F7/12738942104014106/epubprivate/OEBPS/Images/figure_0073_0010.jpg?sign=1739331372-TMDXlLjd85uLhrddErG5dO2c1xF78cv0-0-a1c48a44e26c89a6ef46a7ae9b48c75a)
因此
![](https://epubservercos.yuewen.com/1A97F7/12738942104014106/epubprivate/OEBPS/Images/figure_0073_0011.jpg?sign=1739331372-bkM6Bdjuvo2guUTAJZgnStR6UfPqZvZi-0-7e897a4d87879ba0a9380c49d558d09b)
42.随机变量服从(0,1)上的均匀分布,Y=eX, Z=|lnX|,分别求随机变量Y与Z的概率密度fY(y)及fZ(z).
解 y=ex在(0,1)内单调,x=lny可导,且,因此有
![](https://epubservercos.yuewen.com/1A97F7/12738942104014106/epubprivate/OEBPS/Images/figure_0074_0002.jpg?sign=1739331372-6teppQPZFPykxzhjtwCWerLPoY3ofgO0-0-1aa6df13310a8b19ca5c624a3930f9e4)
在(0,1)内,lnx<0, |lnx|=-lnx单调,且 ,因此有
![](https://epubservercos.yuewen.com/1A97F7/12738942104014106/epubprivate/OEBPS/Images/figure_0074_0004.jpg?sign=1739331372-fJ4mDlrlgYNTJrGc2nPtobF6zVJiUf2W-0-29661f79d022ab0148025efe61680eed)
43.设X服从参数λ=1的指数分布,求的概率密度fY(y)及Z=X 2的概率密度fZ(z).
解 在[0, +∞)上单调,x=y2(0≤y<+∞),
.根据题意有
![](https://epubservercos.yuewen.com/1A97F7/12738942104014106/epubprivate/OEBPS/Images/figure_0074_0008.jpg?sign=1739331372-m3uZ3G0IU5UVW5I61tsk0ulBDbjAF1iA-0-45a8bda5f38d2b37785a4cb15992cd65)
因此有
![](https://epubservercos.yuewen.com/1A97F7/12738942104014106/epubprivate/OEBPS/Images/figure_0074_0009.jpg?sign=1739331372-IyuouxGz0TbsPDAJ9K1qWAhcW7QvPsKd-0-87ad40169b9c82b758b1c32d940df452)
z=x2在[0, +∞)上单调 ,因此有
![](https://epubservercos.yuewen.com/1A97F7/12738942104014106/epubprivate/OEBPS/Images/figure_0074_0011.jpg?sign=1739331372-4klluVm8aYNxABm16nvo7oYCpfvqqjlQ-0-7cfac58af4b3f7aa30255869db72c83e)
44.随机变量X~f(x),当x≥0时 ,分别计算随机变量Y与Z的概率密度fY(y)及fZ(z).
解 由于y=arctanx是单调函数,其反函数是 在
内不恒为零,因此,当
时,有
在x>0时也是x的单调函数,其反函数为
,因此当z>0时,
![](https://epubservercos.yuewen.com/1A97F7/12738942104014106/epubprivate/OEBPS/Images/figure_0074_0016.jpg?sign=1739331372-5nWxMRd0CF7cgmrEtORL3HEDXX2RRyL7-0-a66a6827d5b28e499c82a0d8626fb72d)
即Y服从区间 上的均匀分布.
![](https://epubservercos.yuewen.com/1A97F7/12738942104014106/epubprivate/OEBPS/Images/figure_0074_0020.jpg?sign=1739331372-micFthbWLRqdLXEuS97XCNSmt7tSC3o1-0-dff4377cfe0683d3d617e124316ea1d4)
![](https://epubservercos.yuewen.com/1A97F7/12738942104014106/epubprivate/OEBPS/Images/figure_0075_0001.jpg?sign=1739331372-hmyoWqVhnZUvj2GXGEikyAhyXYjLwug2-0-87deeea27a4bae8cb9cdebad5a41b7ac)
即与X同分布.
45.一个质点在半径为R、圆心在原点的圆的上半圆周上随机游动.求该质点横坐标X的概率密度fX(x).
解 如图2.1所示,设质点在圆周位置为M,弧的长记为L,显然L是一个连续型随机变量,L服从[0, πR]上的均匀分布.
![](https://epubservercos.yuewen.com/1A97F7/12738942104014106/epubprivate/OEBPS/Images/figure_0075_0004.jpg?sign=1739331372-FhesWxW4GyfbQZZVeYiK98sACHzlQSAF-0-00b0419f3f3412ac6e9a69e2be177fac)
M点的横坐标X也是一个随机变量,它是弧长L的函数,且
![](https://epubservercos.yuewen.com/1A97F7/12738942104014106/epubprivate/OEBPS/Images/figure_0075_0006.jpg?sign=1739331372-MveApLUWTvDfTRq6k3ZWV867Jz7ZKVrQ-0-53ace098ee6c06a207523cdd57bad328)
![](https://epubservercos.yuewen.com/1A97F7/12738942104014106/epubprivate/OEBPS/Images/figure_0075_0005.jpg?sign=1739331372-8NQi1jTfq4wUNOjdtWqZHyzVP7xKcxlE-0-56054bb31bb9ecf026946cd46cd71d62)
图 2.1
函数x=Rcos(l/R)是l的单调函数(0<l<πR),其反函数为
![](https://epubservercos.yuewen.com/1A97F7/12738942104014106/epubprivate/OEBPS/Images/figure_0075_0007.jpg?sign=1739331372-9vUqgVoFDIzpmWEXnwkBjr2dLVnfkBEG-0-c2b66f9f2906bb7ed526d79ff9b9c343)
当-R<x<R时,l'x≠0,此时有
![](https://epubservercos.yuewen.com/1A97F7/12738942104014106/epubprivate/OEBPS/Images/figure_0075_0008.jpg?sign=1739331372-5PqtgkbsUGuO9Cx2Cw6G1hCrh20JCsWs-0-1f45db4833750c683067a1becd2acac2)
当x≤-R或x≥R时,fX(x)=0.
46.设X~N(3,4),求:
(1)P{X≤2.5}; (2)P{X>1.3}; (3)P{1≤X≤3.5};
(4)P{|X|>2.8}; (5)P{|X|<1.6}; (6)P{X-2>5}.
![](https://epubservercos.yuewen.com/1A97F7/12738942104014106/epubprivate/OEBPS/Images/figure_0075_0009.jpg?sign=1739331372-uyHghhWSQGNRLZlGjKw3zsBgKfjlFVvc-0-18c2c01fb4058c0a0cab363d4b8e9f67)
![](https://epubservercos.yuewen.com/1A97F7/12738942104014106/epubprivate/OEBPS/Images/figure_0076_0001.jpg?sign=1739331372-8O0O4GqKOrjRvVCgQsbTKgfpQidDcvW9-0-7b1e48dab9cf5221e1ef8b3118a648c2)
47.随机变量X~N(μ, σ2),若P{X<9}=0.975, P{X<2}=0.062,试计算μ和σ2的值并求P{X>6}.
![](https://epubservercos.yuewen.com/1A97F7/12738942104014106/epubprivate/OEBPS/Images/figure_0076_0002.jpg?sign=1739331372-7Pp4UqTjUz8Y3ZLf7j3hkGV39PD3bu49-0-7a46ae8ff5897b66894d78ab4cbeb691)
查表得
![](https://epubservercos.yuewen.com/1A97F7/12738942104014106/epubprivate/OEBPS/Images/figure_0076_0003.jpg?sign=1739331372-kfwaq5NwezCf2o4T2fdRviIDZtojDJtD-0-7d322eedbb039eab4def159868162c52)
解关于μ和σ的方程组,得
μ=5.08,σ=2.
故
P{X>6}=1-P{X≤6}=1-Φ(0.46)=0.328.
48.已知随机变量X~N(10,22), P{|X-10|<c}=0.95, P{X<d}=0.023,试确定c和d的值.
解 查表得
.
![](https://epubservercos.yuewen.com/1A97F7/12738942104014106/epubprivate/OEBPS/Images/figure_0076_0006.jpg?sign=1739331372-QlBCL0yGMI48nCZES0FGv1PldCNnRYDi-0-ede4aa2382a01947e317f994722110ce)
查表得 .
49.假定随机变量X服从正态分布N(μ, σ2),确定下列各概率等式中a的数值:
(1)P{μ-aσ<X<μ+aσ}=0.9;
(2)P{μ-aσ<X<μ+aσ}=0.95;
(3)P{μ-aσ<X<μ+aσ}=0.99.
解
(1)2Φ(a)-1=0.9, Φ(a)=0.95, a=1.64;
(2)2Φ(a)-1=0.95, Φ(a)=0.975, a=1.96;
(3)2Φ(a)-1=0.99, Φ(a)=0.995, a=2.58.
50.设X~N(160, σ2),如要求X落在区间(120,200)内的概率不小于0.8,则应允许σ最大为多少?
![](https://epubservercos.yuewen.com/1A97F7/12738942104014106/epubprivate/OEBPS/Images/figure_0077_0001.jpg?sign=1739331372-pZxE4pAbPamSrwcsoAxs5y80gqTCPTEJ-0-d5fc6453c6d6316889cd7b419a47fdbd)
查表得Φ(1.28)≈0.9,于是可得.故σ最大约为31.
51.设一节电池使用寿命X~N(300,352),求:
(1)使用250h后仍有电的概率;
(2)满足关系式P{|X-300|<d}=0.9的数值d;
(3)满足关系式P{X>c}=P{X<c}的数值c.
![](https://epubservercos.yuewen.com/1A97F7/12738942104014106/epubprivate/OEBPS/Images/figure_0077_0003.jpg?sign=1739331372-TLWjLhLVyDMBtRL2EFjAwjSVVEgfoWZq-0-e48ba88ab67d2f74db3c63d445f86da9)
52.设某班有40名同学,期末考试成绩X~N(375,81),假设按成绩评定奖学金,一等奖学金评4人,二等奖学金8人,问至少得多少分才能得到一、二等奖学金?
解 假设分别至少得分为a和b,才能得到一、二等奖学金.
![](https://epubservercos.yuewen.com/1A97F7/12738942104014106/epubprivate/OEBPS/Images/figure_0077_0004.jpg?sign=1739331372-LCapZvSLJUymC4PaT7dgSNXc3gAoF2ND-0-06be903eba47b25c96269cdd2e180a1c)
(B)
1.设随机变量X的概率密度为f(x),且f(-x)=f(x).F(x)是X的分布函数,则对任意实数a,有( ).
![](https://epubservercos.yuewen.com/1A97F7/12738942104014106/epubprivate/OEBPS/Images/figure_0077_0005.jpg?sign=1739331372-kGvooP4HFU15RySoO9eXs6fRds2ifKIU-0-85d2d5bb33cf77b7ff528d1e72d1c0a1)
![](https://epubservercos.yuewen.com/1A97F7/12738942104014106/epubprivate/OEBPS/Images/figure_0077_0006.jpg?sign=1739331372-pKwX5cSdUKHtb6TzRJQtoamoMke0zPCB-0-232ed5ee57fc4035fd5ca4c634f3a872)
C.F(-a)=F(a);
D.F(-a)=2F(a)-1.
解 ,
由于
![](https://epubservercos.yuewen.com/1A97F7/12738942104014106/epubprivate/OEBPS/Images/figure_0078_0001.jpg?sign=1739331372-2mI4OGLrcrWnEtlptdcQfzk0gs6C80dd-0-c5ad00e19bc95340e369088c9cc7fd00)
所以
![](https://epubservercos.yuewen.com/1A97F7/12738942104014106/epubprivate/OEBPS/Images/figure_0078_0002.jpg?sign=1739331372-SvF4xYfnZGR6GU0OB5AF09sAKzGqaqfj-0-93d155e91c70e2a96d1bdd9ae0d78a79)
即
![](https://epubservercos.yuewen.com/1A97F7/12738942104014106/epubprivate/OEBPS/Images/figure_0078_0003.jpg?sign=1739331372-0wDrEXcf5V5ppr620rM3oFEoQOI4DbZf-0-282ae08e43f1b2cd7dfcf6863edd21c8)
所以有
![](https://epubservercos.yuewen.com/1A97F7/12738942104014106/epubprivate/OEBPS/Images/figure_0078_0004.jpg?sign=1739331372-glFehjpkG6eNABKGCQid2j9En63BZuCG-0-af952a499059f0b736c6dfa0d3e5f955)
B为正确答案.
2.设F1(x)与F(x2)分别为随机变量X1与X2的分布函数,为使F(x)=aF1(x)-bF2(x)是某一随机变量的分布函数,a, b的值应取( ).
![](https://epubservercos.yuewen.com/1A97F7/12738942104014106/epubprivate/OEBPS/Images/figure_0078_0005.jpg?sign=1739331372-aNLhWemL4c67p2TgMp90bpjkHyDHu8z3-0-86d318af526ad5ced6f8f55487b90374)
![](https://epubservercos.yuewen.com/1A97F7/12738942104014106/epubprivate/OEBPS/Images/figure_0078_0006.jpg?sign=1739331372-H1KRLk5VaWJvPWSizczYx3vAKKqEf0o2-0-98e22a7f4ae4e64362c70f4fcfba5627)
![](https://epubservercos.yuewen.com/1A97F7/12738942104014106/epubprivate/OEBPS/Images/figure_0078_0007.jpg?sign=1739331372-Kxf7GnmcoKSLDEayIjQG8StOWagkGB9P-0-a28a780e50003fd2d0ca2bc62e080226)
![](https://epubservercos.yuewen.com/1A97F7/12738942104014106/epubprivate/OEBPS/Images/figure_0078_0008.jpg?sign=1739331372-b9mIvWivTrnI8O136K3sDm2mo7kOY56R-0-fdb9082875b63568d71fded11c4dcb60)
解 由分布函数的性质,应有
![](https://epubservercos.yuewen.com/1A97F7/12738942104014106/epubprivate/OEBPS/Images/figure_0078_0009.jpg?sign=1739331372-9u09t3jjeBwfYUIZ9HFpzSnYqkYcCho7-0-a307fec424f9ccb8a0b5c1f56c6b04cf)
所以A为正确答案.
3.设随机变量X服从正态分布N(μ, σ2),则随σ的增大,概率P{|X-μ|<σ}( ).
A.单调增大;
B.单调减小;
C.保持不变;
D.增减不定.
解 由正态分布的标准化变换得
![](https://epubservercos.yuewen.com/1A97F7/12738942104014106/epubprivate/OEBPS/Images/figure_0078_0010.jpg?sign=1739331372-RkXSU31BU3sRcbKGkweWimy3knyRWUVb-0-7b231ad4d32e0cb90292039c7e006de8)
所以概率P{|X-μ|<σ}的大小与σ无关.C正确.
4.设随机变量X服从正态分布N(μ1, θ21),随机变量Y服从正态分布N(μ2, θ22),且P{|X-μ1|<1}>P{|Y-μ2|<1},则必有( ).
A.θ1<θ2;
B.θ1>θ2;
C.μ1<μ2;
D.μ1>μ2.
解 因为θi>0(i=1,2),由正态分布的标准化变换有
![](https://epubservercos.yuewen.com/1A97F7/12738942104014106/epubprivate/OEBPS/Images/figure_0078_0011.jpg?sign=1739331372-MCs9KRMptNpvByWdR3H9ntrZMHDk7RNC-0-6d5174a30b14ea5ae91bfe36af2f4496)
所以A正确.
5.从数1,2,3,4中任取一个数,记为X,再从1,2, …, X中任取一个数,记为Y,求P{Y=2}.
解 显然,随机变量X能取1,2,3,4这4个值,由于事件{X=1}, {X=2}, {X=3},{X=4}构成完备事件组,且,则有条件概率
![](https://epubservercos.yuewen.com/1A97F7/12738942104014106/epubprivate/OEBPS/Images/figure_0079_0002.jpg?sign=1739331372-dCy974m54RXuMcl3Crz2dhhW3DcB6ZAv-0-47af57b1cb126aed1988fa4df472e09a)
所以由全概率公式得
![](https://epubservercos.yuewen.com/1A97F7/12738942104014106/epubprivate/OEBPS/Images/figure_0079_0003.jpg?sign=1739331372-a0P72iL2A4eCYjLnJYFZpensAli2Gkzh-0-fc2a1939e511dd914f77d05cf3681b37)
6.设在一段时间内进入某一商店的顾客人数X服从参数为λ的泊松分布,每个顾客购买某种商品的概率为p,并且每个顾客是否购买该种商品相互独立,求进入商店的顾客购买该种商品的人数Y的概率分布.
解 由题意得
![](https://epubservercos.yuewen.com/1A97F7/12738942104014106/epubprivate/OEBPS/Images/figure_0079_0004.jpg?sign=1739331372-3e3dxxELB4IuwwQrEn4Z3l8remPplj0v-0-5819fbd31a974a6817d4d6cf31d19b81)
设购买某种物品的人数为Y,在进入商店的人数X=m的条件下,随机变量Y的条件分布为二项分布B(m, p),即
![](https://epubservercos.yuewen.com/1A97F7/12738942104014106/epubprivate/OEBPS/Images/figure_0079_0005.jpg?sign=1739331372-yoPhadPcldMr70yk4cApOEHIGLv00Ptp-0-8a2b5473b09fe9de0bc70392d840e03b)
由全概率公式得
![](https://epubservercos.yuewen.com/1A97F7/12738942104014106/epubprivate/OEBPS/Images/figure_0079_0006.jpg?sign=1739331372-mRC7qH1a7yNLgdN9O7pdqAVJd9Gefyrm-0-950e816ec2e6f260c66c5a3a6bb4276d)
7.设X是只取自然数为值的离散随机变量.若X的分布具有无记忆性,即对任意自然数n与m,都有
P{X>n+m|X>m}=P{X>n},
则X的分布一定是几何分布.
解 由无记忆性知
![](https://epubservercos.yuewen.com/1A97F7/12738942104014106/epubprivate/OEBPS/Images/figure_0079_0007.jpg?sign=1739331372-84IV1gSewEXJgyGN8SVMy6a2mVG2jCW8-0-6e8a4d363f5465994c3fc7bdae0b002c)
或
P{X>n+m}=P{X>n}·P{X>m}.
若把n换成n-1仍有
P{X>n+m-1}=P{X>n-1}·P{X>m}.
上两式相减可得
P{X=n+m}=P{X=n}·P{X>m}.
若取n=m=1,并设P{X=1}=p,则有
P{X=2}=p(1-p).
若取n=2, m=1,可得
P{X=3}=P{X=2}·P{X>1}=p(1-p)2.
若令P{X=k}=p(1-p)k-1,则由归纳法可推得
P{X=k+1}=P{X=k}·P{X>1}=p(1-p)k, k=0,1, …,
这表明X的分布就是几何分布.
8.假设一大型设备在任何长为t的时间内发生故障的次数N(t)服从参数为λt的泊松分布.(1)求相继两次故障之间时间间隔T的概率分布;(2)求在设备已经无故障工作8小时的情况下,再无故障工作8小时的概率Q.
解 发生故障的次数N(t)是一个随机变量,且N(t)服从参数为λt的泊松分布,即
![](https://epubservercos.yuewen.com/1A97F7/12738942104014106/epubprivate/OEBPS/Images/figure_0080_0001.jpg?sign=1739331372-qBbTIXNklV939bgcnuDRMDzXr00XoyPL-0-0bf630937620f1d8cdcc4b9c481a9012)
(1)相继两次故障之间时间间隔T是非负连续型随机变量,所以,当t<0时,分布函数为F(t)=P{T≤t}=0;当t≥0时,{T>t}与{N(t)=0}等价,于是有
F(t)=P{T≤t}=1-P{T>t}=1-P{N(t)=0}=1-e-λt,
即
![](https://epubservercos.yuewen.com/1A97F7/12738942104014106/epubprivate/OEBPS/Images/figure_0080_0002.jpg?sign=1739331372-jmEwahLi2SWY44h4rDbvUyiAE8u2Qydz-0-e7ab3780160683b253157ff61639e647)
因此,随机变量T服从参数为λ的指数分布.
![](https://epubservercos.yuewen.com/1A97F7/12738942104014106/epubprivate/OEBPS/Images/figure_0080_0003.jpg?sign=1739331372-hmSLYseW0lqwpuAclqQuCSwjBTLBlCh6-0-9345e159687b372abe6fdace989792fe)
9.设随机变量X的概率密度为
![](https://epubservercos.yuewen.com/1A97F7/12738942104014106/epubprivate/OEBPS/Images/figure_0080_0004.jpg?sign=1739331372-6c6EFHKdrL5qHL8cZlRAJP39VyCaOKMP-0-e82fa8ebaa06667ddd3f5f205e35f4c2)
F(x)是x的分布函数,求随机变量Y=F(X)的分布函数G(y).
解 对X的概率密度积分得X的分布函数
![](https://epubservercos.yuewen.com/1A97F7/12738942104014106/epubprivate/OEBPS/Images/figure_0080_0005.jpg?sign=1739331372-OFCV3ix9LGTWMcWBfRpuPYGLQrXFpMAF-0-2176f914b37ff48e07b6e6a85b31d476)
当y≤0时,有
G(y)=P{Y≤y}=P{F(X)≤y}=0,
当y≥1时,有
G(y)=P{Y≤y}=P{F(X)≤y}=1,
当0<y<1时,有
![](https://epubservercos.yuewen.com/1A97F7/12738942104014106/epubprivate/OEBPS/Images/figure_0081_0001.jpg?sign=1739331372-AnoJFFKMeeOGRQx3x6FAIfHGMQgQNI4I-0-49862df862bd71de050041c6af731015)
或
![](https://epubservercos.yuewen.com/1A97F7/12738942104014106/epubprivate/OEBPS/Images/figure_0081_0002.jpg?sign=1739331372-0KyGOLYwu5VVVIpclUDxdoOVYQOZ5Kyp-0-528395e99cf3b05a8014b3a59365cf89)
于是,Y=F(X)的分布函数为
![](https://epubservercos.yuewen.com/1A97F7/12738942104014106/epubprivate/OEBPS/Images/figure_0081_0003.jpg?sign=1739331372-nzbDjS32zODOu0INvezQy6bzYKZUaXNu-0-71cd2f9326d82475549f261221f9ecd0)
即Y=F(X)服从区间[0,1]上的均匀分布.
10.假设随机变量X服从参数为λ的指数分布,求随机变量Y=min{X, k}的分布函数(k为一常数,k>0).
解 由题设条件
![](https://epubservercos.yuewen.com/1A97F7/12738942104014106/epubprivate/OEBPS/Images/figure_0081_0004.jpg?sign=1739331372-0PJ3AxK0j4oNP7VM3BavgMKIU8MwO1NJ-0-0063a7f892f26c108f251bde742d3ab4)
所以
FY(y)=P{Y≤y}=P{m in{X, k}≤y}.
当y<0时,有
![](https://epubservercos.yuewen.com/1A97F7/12738942104014106/epubprivate/OEBPS/Images/figure_0081_0005.jpg?sign=1739331372-zn1FRDLZ1IOWaoNUDhtIHyAZ6d7cHlrV-0-757c01c0fba9cc8fe221dd18cb6bbe24)
当0≤y<k时,有
![](https://epubservercos.yuewen.com/1A97F7/12738942104014106/epubprivate/OEBPS/Images/figure_0081_0006.jpg?sign=1739331372-YpggFOrGj5JnFgtxZGyhr1R7fecpeNqT-0-bd40922cd6d179e24ce9dd3e61450a29)
当y≥k时,有
FY(y)=P{Y≤y}=P{m in{X, k}≤y}=1.
所以Y的分布函数为
![](https://epubservercos.yuewen.com/1A97F7/12738942104014106/epubprivate/OEBPS/Images/figure_0081_0007.jpg?sign=1739331372-9okWW0LwG8IVI8YsXhbfw788avthfoEH-0-f887c6088a79aec0cab980ffa2bab522)