
2.5 风险分析中常用的概率分布
2.5.1 几种离散型概率分布
1.(0-1)分布(又称两点分布)
(0-1)分布的分布列如下:

若X服从(0-1)分布,则

2.二项分布
设试验只有两种可能结果:A、Ā,且每次试验中A发生的概率为p, Ā发生的概率为q=1-p,将试验重复n次,则称这种试验为伯努利试验。
在n次伯努利试验中,事件A发生的次数X是一个随机变量。可以证明,在n次试验中,事件A恰好发生k次的概率Pn(X=k)可用下式求得

由于式(2-52)的右侧是二项式(p+q)n展开式的第k+1项,所以称此随机变量X服从二项分布。二项分布记为B(n, p)。
若X服从二项分布,则

3.泊松分布
如果随机变量X的可能取值为0,1,2, …,而(X=k)的概率为

则称X服从泊松分布,其中参数λ>0。泊松分布记为Pλ(k)。
若X服从泊松分布,则

可以证明,随着n的增大,二项分布与以λ=np为参数的泊松分布趋于接近,因此,当n很大时,可用泊松分布近似求出二项分布的值。
2.5.2 几种连续型概率分布
1.均匀分布U(a, b)
(1)密度函数:

均匀分布的密度曲线见图2-3。

图2-3 均匀分布密度曲线
(2)均值:

(3)方差:

若X在区间 [a, b]上服从均匀分布,则 X取值于[a, b]中任一小区间内的概率只与该小区间的长度成正比,而与小区间的具体位置无关。因此,X取值于 [a, b]内任意等大小区间内的概率都是相等的,这也是一种等可能性的意思。
均匀分布是一种常用的分布,它在统计仿真等方法中占有重要地位。
2.正态分布N(a, σ2)
(1)密度函数:

正态分布密度曲线见图2-4。

图2-4 正态分布密度曲线
(2)均值:

(3)方差:

正态分布中的参数a和σ2分别为均值和方差。
可以证明,若X服从正态分布N(a, σ2),则X的取值落在 [a-3σ, a+3σ]区间的概率为99.7%,即

这就是重要的“3σ法则”。
特别地,当a=0, σ2=1时,N(a, σ2)称为标准化正态分布,记为N(0,1)。标准化正态分布的密度函数为:

标准化正态分布的分布函数为

式中:Φ(x)称为拉普拉斯函数,可由正态分布表查得。
一般正态分布可通过变换转化为标准化正态分布。引进变量代换:,则

上式是一重要的关系式。要计算F(x),只要将其转化为,便可查标准化正态分布表了。
无论在理论上,还是在实际中,正态分布都起着重要的作用。许多随机变量的概率分布都可以用正态分布来描述。若一个随机变量受大量作用微小且相互独立的因素综合影响,那么它将服从或近似服从正态分布。
3.对数正态分布
(1)两参数对数正态分布ln(a, σ2)。
1)密度函数。若Y=lnX服从正态分布N(ay,),则X服从对数正态分布,其密度函数为:

式中:ay、σy分别为Y的均值、均方差。
对数正态分布密度函数曲线见图2-5。

图2-5 对数正态分布密度函数
2)均值:

3)方差:

当对数分布应用于经济资料时,常称为Cobb-Douglas分布。
(2)三参数对数正态分布ln(ay,, b)。
1)密度函数:

2)均值:

3)方差:

对两参数的对数正态分布Y,采用平移变换X=Y+b,就可以得到三参数的对数正态分布。即两参数正态分布ln(ay,)可视为b=0的三参数对数正态分布的特例。
4.指数分布 e(λ)
(1)密度函数:

式中参数λ>0。
(2)均值:

(3)方差:

5.三角分布Triangular(a, b, c)
(1)密度函数:

三角分布密度函数曲线见图2-6。

图2-6 三角分布密度函数
a<c<b,其中,a为位置参数;b-a为比例参数;c为形状参数。当c=b时,为右三角分布;当c=a时,为左三角分布。
(2)均值:

(3)方差:

三角分布在风险管理中也经常使用。
6.极值分布(Ⅰ型)G(u, α)
(1)密度函数:

式中:u为位置参数;α>0为比例参数。
分布函数

(2)均值:

(3)方差:

极值分布指的是n次观测中的极大值或极小值的概率分布。理论上,极值分布有3种可能的渐近极值分布,此处介绍的极值分布(Ⅰ型)为指数原型极值分布,其在气象、水文和地震的风险分析中用得较为广泛。
7.P-Ⅲ型分布
(1)密度函数:

式中:参数α>0, x>a0。
P-Ⅲ型分布密度曲线如图2-7所示。

图2-7 P-Ⅲ型分布密度函数
(2)均值:

(3)方差:

在实际工作中,常要计算指定概率p所相应的随机变量取值xp,即求出满足下述等式的xp:

亦即

由上式可知,当α、β、a0已知时,xp只取决于p。α、β与a0与数字特征E(X)、Cv、Cs有下列关系:

因此只要E(X)、Cv与Cs一经确定,xp仅与p有关。但是直接由积分式来计算是非常困难的,实用上,通过查算已制成的专用表可以使计算工作大大简化。
令

由上式可得

将之代入式(2-86),并同时将式(2-86)中的α, β, a0以相应的E(X), Cv, Cs来表示,通过简化可得

上式等号右边与参数α有关而由式(2-87)可知,α是Cs的函数,因此,可对若干给定的Cs值,编制φp和p的对应数值表。此表已先后由美国工程师福斯特和苏联工程师雷布京制订出来。常称为P-Ⅲ型分布离均系数φ值表。
例2设某地年雨量X的分布符合P-Ⅲ型分布,且E(X)=1000mm, Cv=0.5, Cs=1.0,试求该地百年一遇的年降雨量。
解:所谓百年一遇的年降雨量,即求满足下式的xp。

由Cs=1.0, p=0.01查P-Ⅲ型分布离均系数表,得
φp=3.02
所以

P-Ⅲ型分布适应性较强,计算比较简便。1927年福斯特首先将它用于水文现象,以后得到很多国家水文学者的广泛研究,也是我国水利水电工程水文计算规范中推荐采用的概率分布。