
会员
AI智能写作:巧用AI大模型让新媒体变现插上翅膀
刘丙润更新时间:2025-03-28 10:21:54
最新章节:封底开会员,本书免费读 >
本书共分为8章,分别讲解了常见的人工智能以及人工智能影响下的广告流量变现、商业合作变现、直播变现、私域变现和IP变现等。此外,还对未来的人工智能与新媒体变现做了趋势分析。
品牌:北大出版社
上架时间:2024-03-01 00:00:00
出版社:北京大学出版社
本书数字版权由北大出版社提供,并由其授权上海阅文信息技术有限公司制作发行
AI智能写作:巧用AI大模型让新媒体变现插上翅膀最新章节
查看全部- 封底
- 后记 人工智能与新媒体变现的关系
- 8.6 知识付费——基于IP人设的文心一言自我推销模式
- 8.5 秘塔写作猫营销变现——利用人工智能做宣传
- 8.4 百家号AI笔记和AI成片——一款软件搞定图文+视频
- 8.3 知识付费的5种类目——讯飞星火信息搜集三步法
- 8.2 打造IP——人工智能究竟能帮助我们做什么?
- 8.1 知识付费——如何将IP变现模式的效益最大化?
- 第八章 知识付费变现篇——基于I P人设的人工智能自我推销模式
- 7.7 社交私域——文心一言如何批量实现私域变现?
刘丙润
主页
同类热门书
最新上架
- 会员
贝叶斯算法与机器学习
本书共分为10章,涵盖了贝叶斯概率、概率估计、贝叶斯分类、随机场、参数估计、机器学习、深度学习、贝叶斯网络、动态贝叶斯网络、贝叶斯深度学习等。本书涉及的应用领域包含机器学习、图像处理、语音识别、语义分析等。计算机0字 - 会员
AI高效工作一本通
本书共九章,分别介绍AI写作工具、AI优化简历、职场入门AI写作、AI项目策划、AI项目复盘、AI高效办公、AI高效沟通、让职场更轻松的软件和AI职场视频剪辑等内容。计算机10.1万字 - 会员
《机器学习》习题参考
本书配套周志华教授所著的《机器学习》教材,通过大量习题考查读者对机器学习相关知识点的理解与掌握。全书分为两个部分:第一部分习题对应《机器学习》第1~10章的内容,包括绪论、模型评估与选择、线性模型、决策树、神经网络、支持向量机、贝叶斯分类器、集成学习、聚类、降维与度量学习;第二部分包含6章应用专题,通过综合题的形式对知识点进行多角度考查,包括线性模型的优化与复用、面向类别不平衡数据的分类、神经网络计算机19.3万字 - 会员
机器学习(第2版)
机器学习是人工智能的重要技术基础,涉及的内容十分广泛。本书涵盖了机器学习和深度学习的基础知识,主要包括机器学习的概述、统计学基础、分类、聚类、神经网络、贝叶斯网络、支持向量机、文本分析、分布式机器学习算法等经典的机器学习基础知识,还包括卷积神经网络、循环神经网络、生成对抗网络、目标检测、自编码器等深度学习的内容。此外,本书还介绍了机器学习的热门应用领域推荐系统以及强化学习等主题。本书深入浅出、内容计算机30.2万字 - 会员
精通AI虚拟数字人制作与应用:直播主播+视频博主+营销推广+教育培训
本书内容从技能线和工具线展开介绍。其中,技能线介绍了虚拟数字人的技术原理、商业价值、创建工具等基础内容,以及AI文案、AI绘画、虚拟数字人及其直播、AI视频博主、AI带货主播、AI培训讲师等实操案例。工具线介绍了ChatGPT、StableDiffusion、腾讯智影、剪映等工具的使用方法,并通过实例介绍了使用这些工具制作数字人的技巧。计算机7.1万字 - 会员
基于信息增强的图神经网络学习方法研究
本书深入剖析了图神经网络领域所面临的两大核心挑战:深度加深模型退化和监督信息过度依赖。针对这两大挑战,本书提出了一系列解决思路,涵盖模型结构设计、训练策略优化等方面的内容。全书共7章,第1章主要介绍了图神经网络研究的背景与意义,阐述了近年来国内外网络表示学习与图神经网络的研究现状,分析了图神经网络当前面临的挑战及其主要问题等;第2章主要对图神经网络进行概要论述,包括基础的理论、典型的模型方法及应用计算机8.1万字 - 会员
如何教人工智能说人话?
AI的本质是什么?自然语言和人工语言的区别在哪里?ChatGPT究竟是人工智能发展道路上的里程碑,还是某种误入歧途的“假AI”?我们不许诺美丽空洞的AI前景,而是告诉读者,未来的AI之路到底有多少激流险滩——对于统计学工具与硬件升级的片面崇拜,对于智能科学基本原理的蔑视,是目前AI研究的大危机。在我们看来,万众期待的ChatGPT,只是新时代的“牛顿炼金术”。计算机17.8万字 - 会员
深度学习与大模型基础
本书从基础的神经网络、卷积神经网络、循环神经网络等入门知识,到深度学习的应用领域如计算机视觉、自然语言处理等高级主题都有涉及,可以帮助读者更好地理解深度学习知识,并为未来的职业发展打下坚实的基础。计算机23.6万字 - 会员
Keras深度学习与神经网络
本书从人工智能导论入手,阐述人工智能的发展及现状,重点介绍了机器学习和神经网络基础、反向传播原理、卷积神经网络和循环神经网络等内容。本书内容由浅入深,循序渐进,从神经元和感知机入手,逐步讲解深度学习中神经网络基础、反向传播以及更深层次的卷积神经网络、循环神经网络。本书知识体系完整,内容覆盖面广,介绍了深度学习中常用的模型和算法,助力读者多方位掌握深度学习的相关知识。本书可作为高等院校计算机等相关专计算机11万字