
会员
高维数据分析预处理技术
祝琴更新时间:2022-05-26 20:18:44
最新章节:内容简介开会员,本书免费读 >
作者针对高维稀疏数据挖掘问题,从数据预处理的角度,研究对象—属性空间的划分问题,其目的是把所研究的数据挖掘空间分解为若干规模较小的对象:属性空间,从而降低实际数据挖掘的难度。本书针对高维稀疏数据挖掘问题,以降低数据挖掘规模,建立了体系完整的数据预处理理论和方法,具有很强的理论意义和实际应用前景。
上架时间:2015-12-01 00:00:00
出版社:社会科学文献出版社
上海阅文信息技术有限公司已经获得合法授权,并进行制作发行
高维数据分析预处理技术最新章节
查看全部- 内容简介
- 后记
- 参考文献
- 第7章 结论
- 6.5 本章小结
- 6.4 RNASAUBSC方法应用
- 6.3 RNASAUBSC方法算例
- 6.2 剔除非关联子空间RNASAUBSC方法
- 6.1 高维稀疏特征的对象—属性非关联子空间
- 第6章 对象—属性子空间优化
祝琴
主页
同类热门书
最新上架
- 会员
云计算服务保障体系
云计算是一种商业计算模型,它将计算任务分布在大量计算机构成的资源池上,使用户能够按需获取计算能力、存储空间和信息服务。与以往的计算模式不同,云计算环境下,信息安全和服务保障问题更严重、更突出。本书从云计算的安全技术和服务质量评价两个方面论述云计算服务保障的体系架构,安全技术方面主要阐述了基于可信计算的实时度量、基于角色的数据隔离访问、云节点信任链的动态维护模型与验证机制和多级安全访问控制模型;服务计算机9.5万字 - 会员
码上行动:利用Python与ChatGPT高效搞定Excel数据分析
本书内容分3个部分共12章。第1-4章主要介绍什么是数据分析,以及Python的编程环境和基础语法知识。第5-9章主要介绍数据处理和分析的各种方法。第10-12章介绍了如何结合Python与Excel在实际工作中进行数据处理与分析操作。计算机8.5万字 - 会员
数据要素五论:信息、权属、价值、安全、交易
本书从与数据要素关系最密切的信息、权属、价值、安全、交易等五个维度出发,汇聚不同学科背景的既有文献,整合现有观点,对数据要素的多维特性进行探讨,以丰富人们对数据要素的认知,凝聚共识,澄清数字时代的发展与治理迷思,为未来的相关创新提供起点。计算机14.5万字 - 会员
Python数据分析
本书系统介绍了使用Python进行数据分析需要掌握的各项知识,涵盖了Python基础知识、网络爬虫技术、正则表达式、BeautifulSoup和JSON、词语切分、自然语言处理、使用NumPy与Pandas处理数据、数据可视化技术、MySQL、机器学习、朴素贝叶斯模型、支持向量机、随机森林、深度学习以及量化投资。本书通过结合数据分析技术的理论知识与Python的实战应用,帮助读者更好地运用Pyth计算机12.3万字 - 会员
新媒体数据分析基础教程
本书共8章,第1章介绍新媒体数据分析的基础知识;第2章介绍各种新媒体数据分析指标;第3章介绍新媒体数据的采集;第4章介绍新媒体数据处理;第5章介绍新媒体数据分析的思维和方法;第6章介绍新媒体数据可视化;第7章介绍不同新媒体平台的数据分析方法和实战技能;第8章介绍新媒体数据分析报告的制作。计算机9.2万字 - 会员
数据挖掘算法实践与案例详解
数据挖掘算法为大数据与人工智能的核心,掌握数据挖掘各算法的编程实现,有助于提升大数据的实践运用能力。本书详细阐述了数据挖掘常用算法与编程实现,同时,本书以多个经典的数据挖掘赛题为案例,详细论述了数据预处理、特征选择、可视化、算法选择等全流程数据挖掘过程的编程实现,有助于提升读者面对实际数据问题时灵活运用各类算法能力。计算机4.7万字 - 会员
云数据中心基础
本教材共介绍7个项目,项目1为云数据中心认知,主要介绍了什么是数据中心、云数据中心的特点、体系结构、云数据中心和传统数据中心的区别、绿色数据的概念以及发展趋势。项目2介绍了云数据中心的规划与设计,主要包括云数据中心的设计建设的指标、基础设施的规划以及云数据中心的优化策略。项目3介绍了云数据中心的硬件选型,主要包括服务器设备、网络设备以及存储设备的介绍和选型。项目4到项目6则重点介绍了虚拟化技术、云计算机12.1万字 - 会员
MySQL数据库基础实例教程
本书较全面地介绍了MySQL数据库的基础知识及其应用。本书共11章,包括数据库基础,MySQL的安装与配置,数据库的基本操作,数据表的基本操作,表数据的增、改、删操作,数据查询,视图,索引,存储过程与触发器,事务,数据安全等内容。本书采用案例教学方式,每章以应用实例的方式阐述知识要点,再通过实训项目分析综合应用,最后辅以思考与练习巩固所学知识。应用实例、实训项目、思考与练习这3个部分分别采用3个不计算机7.8万字 - 会员
Python数据分析、挖掘与可视化从入门到精通
本书分为4篇,第1篇是基础入门篇,主要介绍数据分析与挖掘的基本概念及Python语言的数据分析基础;第2篇是数据分析篇,主要介绍常用的数据分析方法;第3篇是数据挖掘篇,主要介绍常用的数据挖掘方法;第4篇是实战应用篇,介绍两个完整的数据分析与挖掘案例。计算机10.9万字