
会员
数据科学工程实践:用户行为分析与建模、A/B实验、SQLFlow
谢梁 缪莹莹 高梓尧 王子玲等更新时间:2021-06-24 11:29:59
最新章节:12.4 本章小结开会员,本书免费读 >
这是一本将数据科学三要素——商业理解、量化模型、数据技术全面打通的实战性著作,是来自腾讯、滴滴、快手等一线互联网企业的数据科学家、数据分析师和算法工程师的经验总结,得到了SQLFlow创始人以及腾讯、网易、快手、贝壳找房、谷歌等企业的专家一致好评和推荐。全书三个部分,内容相对独立,既能帮助初学者建立知识体系,又能帮助从业者解决商业中的实际问题,还能帮助有经验的专家快速掌握数据科学的Z新技术和发展动向。内容围绕非实验环境下的观测数据的分析、实验的设计和分析、自助式数据科学平台3大主题展开,涉及统计学、经济学、机器学习、实验科学等多个领域,包含大量常用的数据科学方法、简洁的代码实现和经典的实战案例。第1部分(第1~6章)观测数据的分析技术讲解了非实验环境下不同观测数据分析场景所对应的分析框架、原理及实际操作,包括消费者选择偏好分析、消费者在时间维度上的行为分析、基于机器学习的用户生命周期价值预测、基于可解释模型技术的商业场景挖掘、基于矩阵分解技术的用户行为规律发现与挖掘,以及在不能进行实验分析时如何更科学地进行全量评估等内容。第二部分(第7~9章)实验设计和分析技术从A/B实验的基本原理出发,深入浅出地介绍了各种商业场景下进行实验设计需要参考的原则和运用的方法,尤其是在有样本量约束条件下提升实验效能的方法及商业场景限制导致的非传统实验设计。第三部分(第10~12章)自助式数据科学平台SQLFlow针对性的讲解了开源的工程化的自助式数据科学平台SQLFlow,并通过系统配置、黑盒模型的解读器应用、聚类分析场景等案例帮助读者快速了解这一面向未来的数据科学技术。
品牌:机械工业出版社
上架时间:2021-06-01 00:00:00
出版社:机械工业出版社
本书数字版权由机械工业出版社提供,并由其授权上海阅文信息技术有限公司制作发行
数据科学工程实践:用户行为分析与建模、A/B实验、SQLFlow最新章节
查看全部- 12.4 本章小结
- 12.3 SQLFlow中基于深度学习的聚类模型
- 12.2 聚类模型的应用案例
- 12.1 聚类分析的广泛应用
- 第12章 基于LSTM-Autoencoder的无监督聚类模型
- 11.4 本章小结
- 11.3 黑盒模型的解释性
- 11.2 常见的可解释模型
- 11.1 模型的可解释性
- 第11章 机器学习模型可解释性
谢梁 缪莹莹 高梓尧 王子玲等
主页
同类热门书
最新上架
- 会员
Python数据分析与挖掘实战(第3版)
本书是Python数据分析与挖掘领域的公认的事实标准,前两版销售超过15万册,被国内100余所院校采用为教材,同时也被广大数据科学工作者奉为经典。本书以真实项目案例为驱动,以真实的行业应用为依托,帮助读者快速掌握数据分析与挖掘的相关技术、流程与方法。本书精选了7个经典实战案例,涵盖了房地产、零售、互联网等多个领域,将Python编程知识、数据分析与挖掘知识和行业知识融合,让读者在实践中快速地掌握针计算机14万字 - 会员
ETL数据整合与处理(Kettle)
本书以Kettle实现ETL流程为目标,将ETL知识点与任务相结合,配套真实案例,深入浅出地介绍了ETL数据整合与处理的相关内容。全书共8章,第1章介绍了ETL概念和ETL工具,让读者在了解ETL相关的概念后,立刻上手ETL工具Kettle;第2~6章介绍了Kettle工具转换相关的组件,包括源数据获取、记录处理、字段处理、高级转换、迁移和装载等内容,内容与ETL流程匹配,能帮助读者快速掌握ETL计算机8.1万字 - 会员
数据要素五论:信息、权属、价值、安全、交易
本书从与数据要素关系最密切的信息、权属、价值、安全、交易等五个维度出发,汇聚不同学科背景的既有文献,整合现有观点,对数据要素的多维特性进行探讨,以丰富人们对数据要素的认知,凝聚共识,澄清数字时代的发展与治理迷思,为未来的相关创新提供起点。计算机14.5万字 - 会员
网络科学与网络大数据结构挖掘
《网络科学与网络大数据结构挖掘》作为网络科学的工具性图书共分两大模块:第一模块是基础理论,包括网络基本概念、网络拓扑性质、复杂网络社团挖掘等内容,旨在让读者熟悉一些基本的建模方法和分析技巧。第二模块为应用模块,包括复杂网络在几个代表性领域中的应用研究分析及案例剖析等。全书没有过多地数学和物理推导,而是更为关注网络科学的思维习惯和研究方式,兼具理论性、资料性和实践性。可用于各学科领域的教学及研究人员计算机0字 - 会员
云数据中心基础
本教材共介绍7个项目,项目1为云数据中心认知,主要介绍了什么是数据中心、云数据中心的特点、体系结构、云数据中心和传统数据中心的区别、绿色数据的概念以及发展趋势。项目2介绍了云数据中心的规划与设计,主要包括云数据中心的设计建设的指标、基础设施的规划以及云数据中心的优化策略。项目3介绍了云数据中心的硬件选型,主要包括服务器设备、网络设备以及存储设备的介绍和选型。项目4到项目6则重点介绍了虚拟化技术、云计算机12.1万字 - 会员
Python数据分析、挖掘与可视化从入门到精通
本书分为4篇,第1篇是基础入门篇,主要介绍数据分析与挖掘的基本概念及Python语言的数据分析基础;第2篇是数据分析篇,主要介绍常用的数据分析方法;第3篇是数据挖掘篇,主要介绍常用的数据挖掘方法;第4篇是实战应用篇,介绍两个完整的数据分析与挖掘案例。计算机10.9万字 - 会员
大数据导论
本书围绕新工科背景下大数据人才培养需求编写,既涵盖了大数据的基础知识,又介绍了大数据分析的相关工具与案例。全书共9章,介绍了大数据采集与预处理、大数据存储与管理、大数据处理与分析、大数据可视化处理流程;重点分析了科大讯飞大数据平台在政务、交通、金融和用户画像等实际场景中的应用,还介绍了大数据实验环境的详细搭建步骤,方便读者快速理解和体验大数据应用技术;最后介绍了大数据治理中法律政策、行业标准建设的计算机14.5万字 - 会员
MySQL数据库基础实例教程
本书较全面地介绍了MySQL数据库的基础知识及其应用。本书共11章,包括数据库基础,MySQL的安装与配置,数据库的基本操作,数据表的基本操作,表数据的增、改、删操作,数据查询,视图,索引,存储过程与触发器,事务,数据安全等内容。本书采用案例教学方式,每章以应用实例的方式阐述知识要点,再通过实训项目分析综合应用,最后辅以思考与练习巩固所学知识。应用实例、实训项目、思考与练习这3个部分分别采用3个不计算机7.8万字 - 会员
Power BI商业数据分析完全自学教程
本书共5篇,分为14章介绍了PowerBI的基本操作、数据导入、数据整理、数据建模、数据可视化分析、数据发布等相关技能。第1篇为基础入门篇(第1-3章),主要针对初学者,从零开始,系统且全面地讲解了PowerBI的入门知识点、基本操作及数据的输入和连接操作。第2篇为数据处理篇(第4-6章),介绍了PowerBI数据的整理操作、表格中行/列数据的管理,以及PowerBI数据的高级处理、M函数的使计算机0字