
会员
大数据数学基础(Python语言描述)
雷俊丽 张良均更新时间:2020-04-17 21:21:15
最新章节:参考文献开会员,本书免费读 >
本书全面地讲解了在科学领域广泛运用的微积分、概率论与数理统计、线性代数、数值计算、多元统计分析等数学基础知识。全书共6章:第1章介绍了大数据与数学、数学与Python的关系;第2章介绍了微积分的基础知识,包括极限、导数、微分、不定积分与定积分等;第3章介绍了概率论与数理统计的基础知识,包括数据分布特征、概率与概率分布、参数估计、假设检验等;第4章介绍了线性代数的基础知识,包括行列式、矩阵的运算和特征分解、奇异值分解;第5章介绍了数值计算的基础知识,包括插值法、函数逼近与拟合、非线性方程(组)求根;第6章介绍了常用的多元统计分析方法,包括回归分析、判别分析、聚类分析、主成分分析、因子分析和典型相关分析。本书示例大都结合Python进行求解分析,且每章都有课后习题,可以帮助读者巩固所学的内容。
品牌:人邮图书
上架时间:2019-10-01 00:00:00
出版社:人民邮电出版社
本书数字版权由人邮图书提供,并由其授权上海阅文信息技术有限公司制作发行
大数据数学基础(Python语言描述)最新章节
查看全部雷俊丽 张良均
主页
最新上架
- 会员
商业分析思维与实践:用数据分析解决商业问题
本书本书基于业务问题,就如何搭建分析框架,厘清分析思路,按照标准分析步骤对数据进行怡当的预处理,选择合适的分析方法和分析模型,使用恰当的分析工具对数据进行分析,以及对分析结果进行可视化和符合业务要求的解读等内容展开讲解,帮助业务专家做出合适的业务判断,制定准确的业务策略。计算机13万字 - 会员
大数据导论
本书围绕新工科背景下大数据人才培养需求编写,既涵盖了大数据的基础知识,又介绍了大数据分析的相关工具与案例。全书共9章,介绍了大数据采集与预处理、大数据存储与管理、大数据处理与分析、大数据可视化处理流程;重点分析了科大讯飞大数据平台在政务、交通、金融和用户画像等实际场景中的应用,还介绍了大数据实验环境的详细搭建步骤,方便读者快速理解和体验大数据应用技术;最后介绍了大数据治理中法律政策、行业标准建设的计算机14.5万字 - 会员
Python数据分析、挖掘与可视化从入门到精通
本书分为4篇,第1篇是基础入门篇,主要介绍数据分析与挖掘的基本概念及Python语言的数据分析基础;第2篇是数据分析篇,主要介绍常用的数据分析方法;第3篇是数据挖掘篇,主要介绍常用的数据挖掘方法;第4篇是实战应用篇,介绍两个完整的数据分析与挖掘案例。计算机10.9万字 - 会员
MySQL数据库基础实例教程
本书较全面地介绍了MySQL数据库的基础知识及其应用。本书共11章,包括数据库基础,MySQL的安装与配置,数据库的基本操作,数据表的基本操作,表数据的增、改、删操作,数据查询,视图,索引,存储过程与触发器,事务,数据安全等内容。本书采用案例教学方式,每章以应用实例的方式阐述知识要点,再通过实训项目分析综合应用,最后辅以思考与练习巩固所学知识。应用实例、实训项目、思考与练习这3个部分分别采用3个不计算机7.8万字 - 会员
Power BI商业数据分析完全自学教程
本书共5篇,分为14章介绍了PowerBI的基本操作、数据导入、数据整理、数据建模、数据可视化分析、数据发布等相关技能。第1篇为基础入门篇(第1-3章),主要针对初学者,从零开始,系统且全面地讲解了PowerBI的入门知识点、基本操作及数据的输入和连接操作。第2篇为数据处理篇(第4-6章),介绍了PowerBI数据的整理操作、表格中行/列数据的管理,以及PowerBI数据的高级处理、M函数的使计算机0字 - 会员
ETL数据整合与处理(Kettle)
本书以Kettle实现ETL流程为目标,将ETL知识点与任务相结合,配套真实案例,深入浅出地介绍了ETL数据整合与处理的相关内容。全书共8章,第1章介绍了ETL概念和ETL工具,让读者在了解ETL相关的概念后,立刻上手ETL工具Kettle;第2~6章介绍了Kettle工具转换相关的组件,包括源数据获取、记录处理、字段处理、高级转换、迁移和装载等内容,内容与ETL流程匹配,能帮助读者快速掌握ETL计算机8.1万字 - 会员
Python数据分析
本书系统介绍了使用Python进行数据分析需要掌握的各项知识,涵盖了Python基础知识、网络爬虫技术、正则表达式、BeautifulSoup和JSON、词语切分、自然语言处理、使用NumPy与Pandas处理数据、数据可视化技术、MySQL、机器学习、朴素贝叶斯模型、支持向量机、随机森林、深度学习以及量化投资。本书通过结合数据分析技术的理论知识与Python的实战应用,帮助读者更好地运用Pyth计算机12.3万字 - 会员
数据挖掘算法实践与案例详解
数据挖掘算法为大数据与人工智能的核心,掌握数据挖掘各算法的编程实现,有助于提升大数据的实践运用能力。本书详细阐述了数据挖掘常用算法与编程实现,同时,本书以多个经典的数据挖掘赛题为案例,详细论述了数据预处理、特征选择、可视化、算法选择等全流程数据挖掘过程的编程实现,有助于提升读者面对实际数据问题时灵活运用各类算法能力。计算机4.7万字 - 会员
OLAP引擎底层原理与设计实践
本书分为6篇,共14章。从OLAP核心概念出发,以Presto为例,从整体执行流程到不同SQL的执行原理,力图把OLAP查询的核心流程以一种系统化的方式来给读者讲清楚。第一篇背景知识(第1章和第2章)介绍OLAP的基础知识和Presto相关的背景知识,并给出了后续贯穿全书的SQL代码;第二篇核心原理(第3章和第4章)非常详细地串讲了SQL执行流程,介绍了执行计划的生成和优化;第三篇经典SQL(第5计算机19.7万字