会员
计算机网络简明教程
谢希仁编著计算机网络/计算机理论、基础知识· 22万字
更新时间:2018-12-29 00:01:35
最新章节:参考文献开会员,本书免费读 >
本书分为10章,即概述物理层、数据链路层(包括局域网)、网络层、运输层、应用层、网络安全、因特网上的音频/视频服务、无线局域网及下一代因特网的网际协议等内容。各章均附有习题。
上架时间:2011-11-01 00:00:00
出版社:电子工业出版社
上海阅文信息技术有限公司已经获得合法授权,并进行制作发行
计算机网络简明教程最新章节
查看全部- 参考文献
- 附录B 英文缩写词
- 附录A 部分习题的解答
- 习题
- 10.5 从IPv4向IPv6过渡
- 10.4 IPv6的地址空间
- 10.3 IPv6的扩展首部
- 10.2 IPv6 的基本首部
- 10.1 解决IP地址耗尽的措施
- 第10章 下一代因特网的网际协议
谢希仁编著
主页
同类热门书
最新上架
- 会员
可持续设计:数字·多元·安全
《可持续设计:数字·多元·安全》是国际体验设计大会的演讲案例的论文集,汇聚了当下具有影响力的数位国内外知名企业的设计师、商业领袖、专家的大量实践案例与前沿学术观点,分享并解决了新兴领域所面临的新问题,为企业人员提供丰富的设计手段、方法与策略。计算机19.5万字 - 会员
Access数据库基础与应用标准教程(实战微课版)
本书以理论为基础,以应用为导向,用大量的实例对Access数据库的应用进行全面讲解。全书共8章,主要内容包括数据库的基础知识、Access的基本操作、表的构建、查询的创建、窗体的设计、报表的设计、宏的自动化操作,以及数据库文件的管理。知识点覆盖《全国计算机等级考试二级Access数据库程序设计》考试大纲规定的内容。在介绍Access操作方法的同时,安排大量的动手练案例,并且穿插知识延伸小体例,理论计算机8.5万字 - 会员
大话机器学习:原理|算法|建模|代码30讲
本书是作者多年在数据智能领域中利用机器学习实战经验的理解、归纳和总结。出于回归事物本质,规律性、系统性地思考问题理论为实践服务并且反过来充实理论,为更多人服务的想法和初心,本书系统地阐述了机器学习理论和工程方法论,并结合实际商业场景落地。全书分为3部分。第1部分是机器学习的数学理论理解,这部分不是对于机器学习数学理论的严谨推导和证明,更多是对于理论背后的到底是什么,为什么要这样做的通俗理解。尽可能计算机17.3万字 - 会员
SPSS统计分析标准教程(实战微课版)
本书以SPSS28.0中文版为平台,以实用为原则,由浅入深,全面系统地介绍SPSS的基本功能和实际应用方法。本书涉及面广,从SPSS基本操作开始介绍,覆盖大部分常用功能和高级统计分析方法。本书共11章,内容包括SPSS基础知识、建立与整理数据、SPSS基本统计分析、假设检验、非参数检验、方差分析、相关分析、回归分析、聚类和判别分析、统计图形和SPSS数据分析综合应用。在介绍的过程中,图文并茂地对计算机10.2万字 - 会员
数字广告系统:技术、产品与市场
本书深入剖析了互联网主导下的数字广告系统,详细阐述了如何通过数据驱动的产品技术、计算算法和动态定价模型来推进广告主的数字营销,并使其在广告领域与技术广告体系全面融合。同时,本书还探讨了数字化升级对广告业流程的影响,包括市场研究、内容匹配、定制化广告、广告竞投以及消费者沉浸式互动和用户忠诚度提升等营销职能。这些内容共同构建了数字化和智能化广告发展的综合知识体系。全书分为三篇(共10章):第一篇为基础计算机30.5万字 - 会员
细说机器学习:从理论到实践
《细说机器学习:从理论到实践》从数学知识入手,详尽细致地阐述机器学习各方面的理论知识、常用算法与流行框架,并以大量代码示例进行实践。本书内容分为三篇:第一篇为基础知识,包括机器学习概述、开发环境和常用模块、特征工程、模型评估、降维方法等内容。本篇详细而友好地介绍机器学习的核心概念与原理,并结合大量示例帮助读者轻松入门。第二篇为算法应用,涵盖机器学习最重要与高频使用的模型,包括K-Means聚类、K计算机17.6万字 - 会员
偏最小二乘法优化及其在中医药领域的应用研究
本书内容是在充分利用偏最小二乘原理优势的基础上,重点研究改进与优化偏最小二乘的不足方面,使其更好地适应中医药数据分析。主要内容包括分别引入非径向数据包络分析和降噪稀疏自编码器优化偏最小二乘的噪声处理,使其处理缺失值和噪声更有效;分别引入特征相关、L1正则项和灰色关联优化偏最小二乘的特征提取,实现有效降维和提取特征子集;分别融合受限玻尔兹曼机、稀疏自编码器、深度置信网络提取非线性成分,优化偏最小二乘计算机10.5万字 - 会员
深度强化学习理论与实践
本书比较全面、系统地介绍了深度强化学习的理论和算法,并配有大量的案例和编程实现。全书核心内容可以分为3部分,第一部分为经典强化学习,包括第2、3、4章,主要内容有动态规划法,蒙特卡洛法、时序差分法;第二部分为深度强化学习,包括第6、7、8章,主要内容有值函数近似法、策略梯度法、策略梯度法进阶;第三部分重点介绍了深度强化学习的经典应用——AlphaGo系列算法。另外,作为理论和算法的辅助,第1章介绍计算机12.5万字 - 会员
深度强化学习:算法原理与金融实践入门
深度强化学习是人工智能和机器学习的重要分支领域,有着广泛应用,如AlphaGo和ChatGPT。本书作为该领域的入门教材,在内容上尽可能覆盖深度强化学习的基础知识和经典算法。全书共10章,大致分为4部分:第1部分(第1~2章)介绍深度强化学习背景(智能决策、人工智能和机器学习);第2部分(第3~4章)介绍深度强化学习基础知识(深度学习和强化学习);第3部分(第5~9章)介绍深度强化学习经典算法(D计算机16.9万字